

Determination and Analysis of the Orbit of Meteor 28 (1977-57A) at 154 Epochs during 15th-Order Resonance

N. M. Harwood and G. G. Swinerd

Phil. Trans. R. Soc. Lond. A 1993 342, 601-634

doi: 10.1098/rsta.1993.0034

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to *Phil. Trans. R. Soc. Lond. A* go to: http://rsta.royalsocietypublishing.org/subscriptions

Determination and analysis of the orbit of Meteor 28 (1977-57A) at 154 epochs during 15th-order resonance

BY N. M. HARWOOD AND G. G. SWINERD

Department of Aeronautics and Astronautics, University of Southampton, Southampton, Hants S09 5NH, U.K.

	Contents	PAGE
1. In	atroduction	602
2. Tl	he observations and their accuracies	602
3. Tl	he orbits and their accuracies	604
4. R	esonance theory	604
) Introduction	604
(b	The perturbations in inclination and eccentricity due to resonance	614
(c)	Methodology	615
5. Tl	he perturbations	615
(a) Introduction	615
(b	Zonal harmonic, luni-solar and tesseral harmonic perturbations	615
(c)	~ ***	617
(d	Ocean tides	618
(e)	Solar radiation pressure	622
(f	i Air drag	623
6. A	nalysis of inclination	625
(a) The reduced form of the equation for di/dt	625
(b	The fitting of the variation in inclination	625
7. A	nalysis of eccentricity	628
(a) The reduced form of the equation for de/dt	628
(b) The fitting of the variation in eccentricity	628
8. Si	multaneous fitting of inclination and eccentricity	630
9. E	quations for the individual harmonic coefficients	631
10. A	pproximate accuracy in geoid height	631
11. Co	omparison with comprehensive geopotential models	632
	onclusions	632
\mathbf{R}	eferences	633

The orbit of Meteor 28 (1977-57A) has been determined at 154 epochs between 8 January 1984 and 18 July 1989 during which the orbit was perturbed by 15th-order resonance with the geopotential. In total 9521 observations were used in the orbit determination process, the majority of which were supplied by the U.S. Navy. The remainder were British radar, visual and Hewitt camera observations. The variations in the inclination and eccentricity have been analysed to determine six lumped

Phil. Trans. R. Soc. Lond. A (1993) 342, 601-634

© 1993 The Royal Society

Printed in Great Britain

601

harmonics of order 15 and four of order 30 with accuracies of between 0.4 and 4.4 cm in geoid height. Since the orbit of Meteor 28 was Sun-synchronous, many sources of perturbation of the orbit (solar gravity, tidal effects, solar radiation pressure and drag) were enhanced by solar resonance. The removal of perturbations from the inclination and eccentricity to isolate the geopotential resonance effects posed a significant challenge in the analysis.

1. Introduction

Meteor 28 (1977-57A) was launched on 29 June 1977 and was the first Soviet satellite to be placed into a retrograde orbit. Its initial inclination was 97.91° with a perigee height of 601 km, apogee height 670 km and nodal period of 97.46 min (King-Hele et al. 1991). This choice of orbit was such that the nodal regression rate was identical to the motion of the Earth in its orbit around the Sun (0.986 deg day⁻¹). Such an orbit is said to be Sun-synchronous and has the property of passing over a given point of the Earth's surface at the same local solar time throughout the year. The purpose of the Meteor satellites was primarily for weather monitoring, Meteor 28 being an experimental version. The spacecraft consisted of a cylindrical body with two planar solar arrays erected one on either side. It passed through exact 15th-order resonance with the geopotential on 11 July 1988 under the influence of, initially low, air drag.

The purpose of this work is to determine lumped harmonics of the Earth's geopotential by analysing the changes in inclination and eccentricity of the orbit as it passed through resonance. U.S. Navy radar observations supplied by the U.S. Naval Research Laboratory, British radar, together with Hewitt camera and visual observations have been utilized to determine the orbit at 154 epochs between 8 January 1984 and 18 July 1989. The MACPROP version (Swinerd 1982) of the Royal Aerospace Establishment (RAE) orbit determination program PROP 6 (Gooding 1974) was used for this purpose. Before the changes in inclination and eccentricity due to resonance with the geopotential could be analysed, other major perturbing forces had to be taken into account. The perturbations considered here were those due to the Earth's zonal harmonic and $J_{2,2}$ tesseral harmonic fields, direct luni-solar gravity, the solid-Earth and oceanic tides, solar radiation pressure and aerodynamic drag. Many of these effects would normally be considered negligible, since perturbation magnitudes are usually below the 1σ error in the measured orbit elements. However, the Sun-synchronous orbit meant that the magnitudes of these usually small perturbations were enhanced due to solar resonance; in particular the effects of the direct solar gravity, the solid-Earth and oceanic tides, solar radiation pressure and the influence of the atmosphere's diurnal density bulge in the air drag are significant.

2. The observations and their accuracies

Over 10000 observations were available for the orbit determination and this is prolific for such an analysis. Of these, 9521 were accepted, the majority of which (7879) were supplied by the U.S. Naval Research Laboratory. These were radar observations and had an average *a priori* accuracy of 2 arcmin in angular position and 1 km in range. Of the remainder, 229 were British radar observations, 390 were made by the Hewitt cameras and 1023 were visual observations obtained by the

Table 1. Analysis of residuals for stations with more than five observations accepted

The orbit of Meteor 28

				r	.m.s. residual	ls
	station	number of	range		arc min	-
no.	name	observations accepted	km	r.a.	dec.	total
1	U.S. Navy	1152		1.19	1.60	1.99
2	U.S. Navy	349		1.40	2.01	2.45
3	U.S. Navy	350		1.30	1.69	2.14
4	U.S. Navy	312		1.70	1.90	2.55
5	U.S. Navy	683		1.53	1.86	2.41
6	U.S. Navy	703		1.51	1.91	2.43
29	U.S. Navy	4330	0.6	0.20^{a}	0.29^{a}	0.35
341	British radar	32	0.7	2.30	2.00	3.05
342	British radar	90	1.2	2.20	2.80	3.56
343	British radar	107	1.2	2.00	2.20	2.97
414	Bergvliet	94		1.81	2.10	2.78
2115	Yatel	5		7.10	8.30	10.92
2122	Malvern 5	20		1.70	2.00	2.62
2160	Wormhout	7		7.22	4.70	8.61
2265	Farnham	90		3.37	3.36	4.76
2392	Cowbeech	6		0.41	0.99	1.07
2414	Bournemouth	254		3.94	4.29	5.83
2418	Sunningdale	24		2.37	2.83	3.69
2420	Willobrae	132		3.93	3.83	5.49
2430	Stevenage	6		1.94	1.30	2.34
2431	Copthorne	5		0.44	1.94	1.99
2437	Warrington	11		5.40	4.60	7.09
2572	Wittenheim	6		5.17	5.60	7.62
2657	Bridgwater	13		2.79	2.17	3.52
2658	Hillsborough	20		3.11	3.59	4.75
2659	Herstmonceux Hewitt Camera	106		0.27	0.27	0.38
2662	Northwood	94		3.11	4.05	5.11
2665	Ciresilor	129		3.57	4.63	5.85
2668	North Hykeham	5		4.89	3.64	6.09
2669	Wien, Austria	5		1.34	1.89	2.32
2675	Malvern Link	28		2.33	2.12	3.14
2676	Goostrey	10		3.90	2.33	4.54
2691	RAF Ascension	20		2.06	3.84	4.35
4160	Achel, Belgium	16		4.25	6.96	8.15
8517	Davis, U.S.A.	10		1.43	2.05	2.50
8544	North Canton	9		1.90	2.00	2.76
9652	Siding Spring Hewitt Camera	284		0.09	0.08	0.12

^a Geocentric.

network of volunteer observers who currently report to the Royal Greenwich Observatory. The average a priori accuracy of the British radar observations was 3 arcmin in angular position and 1 km in range. The visual observations had an expected accuracy of between 3 and 5 arcmin. Two sources of Hewitt camera observations were available, one being located at the Royal Greenwich Observatory, Herstmonceux, U.K. The other was at Siding Spring, Australia and this was additionally significant in that it was a valuable source of observations from the

Southern Hemisphere. The Hewitt cameras were by far the most accurate sources of observation, having an expected accuracy of between 0.01 and 0.06 arcmin in right ascension and declination and 0.1 ms in time.

The residuals of the observations have been computed and tabulated by using the MACORES program (Swinerd 1982) and distributed to the observers. The results are summarized in table 1. The angular residuals for station 29 are geocentric and need to be multiplied by a factor of approximately 5 to compare them to the topocentric values. The contribution of the volunteer observers network is acknowledged and very much appreciated.

3. The orbits and their accuracies

The orbits have been determined at 154 epochs between 8 January 1984 and 18 July 1989 using the MACPROP version of the RAE orbit determination program PROP6. The orbital elements for each epoch are listed in table 2, together with their standard deviations below each value, the epoch being at 00 h on the day indicated. The mean anomaly, M, is fitted by a polynomial of the form

$$M = M_0 + M_1 t + M_2 t^2 + M_3 t^3 + M_4 t^4 + M_5 t^5, \tag{1}$$

where t is the time from each epoch. The number of M coefficients required depends on the atmospheric drag during the time span of the orbit determination and in most cases only M_0 – M_2 were required. Some epochs did, however, need the addition of the M_3 term to produce a satisfactory fit when the drag was more significant.

The parameter ϵ indicates the measure of fit of the observations to the orbits and this varied between 0.19 and 0.98. The standard deviations in inclination varied between 0.00004° and 0.00181°, equivalent to an uncertainty of around 5 m and 220 m respectively in orbital position. For the eccentricity, the standard deviations varied between less than 0.000001 and 0.000018 corresponding to about 7 m and 125 m respectively in perigee distance. The average accuracy of the M_1 terms of equation (1) was 0.00020 deg d⁻¹. The accuracy of the M_2 terms varied generally between 0.1% and 10.0%. However some 6% of the orbits have an accuracy for M_2 marginally above the 10% level. The worst case is epoch 94 (MJD 46975) where the level of error in M_2 rises to 28%. This epoch posed some difficulty at the orbit determination stage; the addition of an M_3 term produced a worse result with a greater error in M_2 and an indeterminate M_3 coefficient. After some effort, the presented orbit was thought to be the best possible. The M_3 coefficients, where used, have an accuracy of 10% or better.

4. Resonance theory

(a) Introduction

The Earth's gravitational potential may be expressed as a double infinite series of tesseral harmonics of degree l and order m, with $m \leq l$. The order of the harmonic specifies the variation of the potential with longitude and in simple terms a satellite orbit will experience mth-order resonance if its ground-track repeats after m revolutions. The orbit will be significantly perturbed by the mth-order harmonics in the Earth's geopotential if its rate of decay under the influence of air drag is slow enough. Meteor 28 passed through 15th-order resonance very slowly, but the pace accelerated when the air drag increased towards the end of the analysis period. The

PHILOSOPHICAL THE ROYAL TRANSACTIONS

Table 2. Orbital parameters of Meteor 28 (1977-57.4) at the 154 epochs, with standard deviations

(MJD, modified Julian day; a, semi-major axis (kilometres); e, eccentricity; i, inclination (degrees); Ω , right ascension of the ascending node (degrees); ω , argument of perigee (degrees); M_0 , mean anomaly (degrees); M_1 , mean motion (degrees day $^{-1}$); M_2 , M_3 , other coefficients required to fit polynominal for M; ϵ , measure of fit; N, number of observations used; D, time covered by observations (days).)

						T	$h\epsilon$	e o	rb	it	of	M	ete	eor	2	8													60)5	
D	10	9	1	10		10		10		10		10		10		10		10		10		10		10		10		10		10	
N	55	5.5	3	09		66		20		75		100		66		8		79		74		22		75		9/		59		100	
9	0.52	0.48		0.25		0.79		0.65		0.62		0.59		0.57		0.51		0.43		0.50		0.28		0.52		0.35		0.56		0.45	
M_3										-								1													
M_2	0.002452	0.000087	0.000078	0.008316	0.000036	0.009496	0.000120	0.003042	0.000098	0.004619	0.000098	0.002443	0.000073	0.001979	0.000077	0.003797	0.000000	0.004831	0.000059	-0.000574	0.000056	0.001807	0.000048	-0.000840	0.000062	0.000452	0.000038	0.003672	0.000089	0.001507	0.000055
M_1	5395.55624	0.00022	0.00022	5396.34505	0.00010	5396.91851	0.00031	5397.17034	0.00027	5397.39433	0.00027	5397.61760	0.00021	5397.67430	0.00021	5397.88459	0.00020	5398.04749	0.00018	5398.16727	0.00019	5398.20042	0.00012	5398.42512	0.00021	5398.40395	0.00010	5398.48766	0.00027	5398.58017	0.00014
M_0	319.2688	0.0976	0.1209	65.9188	0.0599	258.5153	0.1592	186.3372	0.1417	132.4605	0.3646	89.8050	0.1315	349.6478	0.1498	266.2050	0.0916	203.3318	0.0853	131.4582	0.1005	84.4132	0.0434	44.8102	0.1154	2.2074	0.0700	312.1020	0.1629	247.4097	0.1940
3	77.7647	0.0976	0.1207	181.9382	0.0601	73.2973	0.1608	19.5215	0.1423	244.6276	0.3637	158.3504	0.1323	80.9379	0.1486	1.7952	0.0914	146.6845	0.0858	77.1974	0.1010	30.6285	0.0433	208.1474	0.1152	136.4490	0.0701	82.7634	0.1637	291.2558	0.1934
\overline{C}	247.9022	0.0008	0.0008	314.1828	0.0004	354.1089	0.0014	13.5777	0.0009	43.7343	0.0010	65.1352	0.0009	95.2753	0.0006	123.4565	0.0007	172.9678	0.0005	199.1679	0.0006	216.6216	0.0005	259.2941	0.0006	281.5856	0.0004	301.9277	0.0008	345.4976	0.0006
i.	97.60150	0.00108	0.00113	97.59691	0.00056	97.58662	0.00128	97.58345	0.00110	97.58082	0.00123	97.58057	0.00083	97.57044	0.00075	97.57046	0.00094	97.55692	0.00072	97.55451	0.00086	97.55158	0.00057	97.55188	0.00094	97.54525	0.00057	97.54385	0.00115	97.53157	0.00066
w	0.004546	0.0000007	0.000000	0.003038	0.000000	0.004626	0.000011	0.003645	0.000015	0.002264	0.000010	0.003539	0.000012	0.004456	0.000000	0.003211	0.000011	0.004010	0.000007	0.004528	0.000005	0.003707	0.000005	0.002442	0.000008	0.004064	0.000005	0.004705	0.000007	0.002405	0.000005
a	6950.3565	0.0002	0.0002	6949.6796	0.0001	6949.1877	0.0003	6948.9717	0.0002	6948.7796	0.0002	6948.5881	0.0002	6948.5397	0.0002	6948.3592	0.0002	6948.2198	0.0002	6948.1171	0.0002	6948.0888	0.0001	6947.8960	0.0002	6947.9143	0.0001	6947.8426	0.0002	6947.7635	0.0001
MJD date	1 45707	8 Jan. 84	2 45750 6 Feb. 84		16 Mar. 84	4 45816	26 Apr. 84	5 45836	15 May 84	$6\ 45867$	16 Jun. 84	7 45889	8 Jul. 84	8 45920	8 Aug. 84	9 45949	6 Sep. 84	10 46000	27 Oct. 84	11 46027	23 Nov. 84	12 46045	11 Dec. 84	13 46089	24 Jan. 85	14 46112	16 Feb. 85	15 46133	9 Mar. 85	16 46178	23 Apr. 85

N. M. Harwood and G. G. Swinerd

606

TRANSACTIONS SOCIETY A

Table 2. (cont.)

ooo									4	٠, ٠,	111	. 1.	LWI	w	UU	u	iii	ı (х.	u.	Ŋ	wı	ne	<i>i</i> u											
	D	10		10		10		10		10		10		10		10		10		10		10		10		10		10		10		10		10	
	×	85		98		66		98		63		83		94		94		100		100		77		63		71		51		40		45		89	
	Э	0.85		0.42		0.82		0.55		17 0.60	32	0.38		0.45		0.52		0.54		0.45		0.80		0.59		0.52		0.36		0.47		0.39		0.44	
	M_3									-0.0003317	0.000033																								
	M_2	0.002446	0.000093	0.004364	0.000046	0.001307	0.000079	-0.000999	0.000068	-0.000863	0.000117	0.001011	0.000049	0.001522	0.000049	0.001885	0.000082	0.003729	0.000061	0.003028	0.000047	-0.000491	0.000080	-0.001983	0.000087	-0.000307	0.000074	0.000689	0.000059	0.001566	0.000100	0.002875	0.000073	0.004303	0.000054
-	M_1	5398.63954	0.00026	5398.73574	0.00016	5398.82101	0.00023	5398.82703	0.00018	5398.81125	0.00045	5398.79913	0.00014	5398.82627	0.00014	5398.85691	0.00025	5398.92248	0.00015	5398.99405	0.00013	5399.01512	0.00021	5398.98764	0.00023	5398.96262	0.00020	5398.96721	0.00017	5398.98751	0.00027	5399.03274	0.00021	5399.10945	0.00017
	M_0	250.1972	0.1360	234.3270	0.0775	209.9777	0.2038	189.9225	0.1661	168.0900	0.2105	148.0262	0.1012	128.9342	0.1030	114.2574	0.1558	110.2940	0.2628	119.8396	0.2630	124.5233	0.2597	114.6377	0.1206	98.8292	0.1141	80.2597	0.1074	61.7481	0.1610	42.3456	0.1287	24.2737	0.0889
	σ	202.5988	0.1367	157.4086	0.0779	122.0658	0.2049	96.6449	0.1669	72.8464	0.2114	47.0313	0.1017	20.4547	0.1037	349.7453	0.1552	308.7811	0.2622	255.0410	0.2625	206.6924	0.2590	172.8246	0.1211	144.5448	0.1145	118.9424	0.1079	93.4081	0.1618	69.0813	0.1293	44.0295	0.0894
	\mho	2.9037	0.0015	15.4764	0.0005	28.0508	0.0011	37.7213	0.0006	47.3843	0.0008	57.0505	0.0005	66.7108	0.0005	76.3702	0.0009	86.0316	0.0005	95.6942	0.0005	105.3566	0.0010	115.0134	0.0007	124.6684	0.0008	134.3152	0.0006	143.9593	0.0009	153.6041	0.0007	163.2492	0.0006
	i	97.53072	0.00078	97.53113	0.00066	97.52945	0.00119	97.53108	0.00072	97.52568	0.00115	97.52360	0.00063	97.52285	0.00068	97.52319	0.00105	97.52199	0.00079	97.52228	0.00053	97.52128	0.00110	97.51624	0.00092	97.51365	0.00096	97.50978	0.00081	97.50938	0.00126	97.50558	0.00095	97.50757	0.00082
	e	0.002840	0.000011	0.003734	0.000000	0.004392	0.000011	0.004552	0.000005	0.004393	0.000008	0.003947	0.000000	0.003362	0.000000	0.002725	0.000013	0.002014	$\overline{}$	0.001853	0.000004	0.002393	0.000018	0.003135	0.000016	0.003747	0.000011	0.004236	0.000000	0.004508				0.004160	0.000008
	a	6947.7126	0.0002	6947.6301	0.0001	6947.5570	0.0002	6947.5518	0.0002	6947.5655	0.0004	6947.5759	0.0001	4947.5526	0.0001	6947.5263	0.0002	6947.4701	0.0001	6947.4088	0.0001	6947.3907	0.0002	6947.4144	0.0002	6947.4359	0.0002	6947.4321	0.0001	6947.4147	0.0002	6947.3760	0.0002	6947.3101	0.0001
W.ID	date	17 46196		18 46209	24 May 85		6 Jun. 85	20 46232		21 46242		22 46252	6 Jul. 85			24 + 6272		25 46282		26 46292		27 46302	25 Aug. 85	28 46312	4 Sep. 85	29 + 6322		30 46332						33 46362	24 Oct. 85

												7	he	or	bit	of	M	[ete	eor	2	8												60	7
10	10	7	10	10		10		10		10		10	-	10	10		10		10		10		10	10	•	10		10		10		10		10
69	26	Ġ	99	58		92		93		61	(3	n O	3	85		71		99		100	i	79	õ		75		93		85		73		8
0.36	0.44	0	0.63	0.38		0.38		0.64		0.43	!	0.47	06 0	0.00	0.48		5330.63		0.47		0.41	:	0.46	0.51		0.61		0.52		0.58		0.46	1	0.54
																	-0.0004533	0.0000245																
0.002252	-0.000613	0.000060	-0.000874	0.000385	0.000062	0.001459	0.000050	0.001704	0.000073	0.003229	0.000058	0.004228	0.000042	0.002138	-0.000030	0.000044	0.001649	0.000072	0.000232	0.000061	0.001376	0.000057	0.001986	0.0000583	0.000057	0.003994	0.000093	0.003840	0.000059	0.001085	0.000063	-0.001097	0.000056	$-0.001115\\0.000064$
5399.17879 0.00012	5399.18809	0.00016	5399.16913	5399.16686	0.00015	5399.18100	0.00014	5399.21495	0.00014	5399.26605	0.00017	5399.34567	0.00011	0.000.412.70	5399.42111	0.00016	5399.43492	0.00041	5399.42698	0.00018	5399.44611	0.00011	5399.48731	0.00021	0.00012	5399.60152	0.00026	5399.68734	0.00016	5399.73845	0.00017	5399.73172	0.00016	5399.71030 0.00015
10.9776 0.0604	4.1543	0.1138	7.7483	17.5216	0.1618	19.9533	0.0576	13.2797	0.0756	1.4460	0.0880	347.0957	0.0928	0000.000	319.8575	0.0782	308.4644	0.0774	301.9358	0.0785	303.1620	0.1114	313.5564	0.1910 395.7881	0.1521	325.5706	0.1440	318.2878	0.1166	307.7666	0.1559	296.5029	0.1496	$284.2562 \\ 0.1566$
$15.0045 \\ 0.0607$	339.9166	0.1132	294.3080	242.3706	0.1614	197.8438	0.0575	162.6756	0.0758	133.0592	0.0885	106.6260	0.0933	00.001	0.0904 54.3052	0.0786	26.0432	0.0773	353.0529	0.0784	312.3468	0.1111	262.7908	0.1912	0.1516	173.8005	0.1446	143.7020	0.1172	117.5916	0.1568	92.4286	0.1504	68.0542 0.1572
$172.8928 \\ 0.0004$	182.5373	0.0006	192.1772	201.8115	0.0005	211.4429	0.0004	221.0730	0.0005	230.7031	0.0005	240.3373	0.0005	0176.647	0.0005	0.0005	269.2362	0.0006	278.8638	0.0006	288.4876	0.0004	298.1091	0.0005 307 7985	0.0005	317.3503	0.0010	326.9718	0.0007	336.5943	9000.0	346.2126	0.0005	$355.8264 \\ 0.0006$
$97.50681 \\ 0.00056$	97.50373	0.00080	97.49974	97.49778	0.00076	97.49667	0.00063	97.49480	0.00069	97.49522	0.00064	97.49863	0.00063	97.50045	97.49841	0.00075	97.49513	0.00080	97.49273	0.00082	97.49002	0.00057	97.48902	0.00072	0.00062	97.48671	0.00115	97.48810	0.00077	97.48741	0.00085	97.48578	0.00068	97.47837 0.00073
0.003579	0.002899	0.000008	0.002414	0.003001	0.000005	0.003063	0.000005	0.003839	0.000007	0.004430	0.000007	0.004852	0.000004	0.004873	0.000004 0.004583	0.000005	0.003919	0.000000	0.003212	0.000007	0.002531	0.000005	0.002219	0.000004	0.000010	0.003254	0.000013	0.003890	0.000000	0.004308	0.000008	0.004422	0.000005	$0.004225\ 0.000006$
6947.2507	6947.2428	0.0001	6947.2591	6947.2611	0.0001	6947.2490	0.0001	6947.2200	0.0001	6947.1761	0.0001	6947.1078	0.0001	0347.0503	0.0001 6947.0431	0.0001	6947.0313	0.0004	6947.0382	0.0002	6947.0218	0.0001	6946.9865	0.0002	0.0001	6946.8887	0.0002	6946.8151	0.0001	6946.7713	0.0002	6946.7771	0.0001	4946.7956 0.0001
34 46372 3 Nov. 85			36 46392			38 46412	13 Dec. 85	39 46422	23 Dec. 85	40 46432					22 Jan. 80 43 46462			11 Feb. 86		21 Feb. 86				13 Mar. 80 48-46519		49 46522	2 Apr. 86	$50 4653\overline{2}$	12 Apr. 86	$51 ext{ } 4654\overline{2}$		52 46552		53 46562 12 May 86

Phil. Trans. R. Soc. Lond. A (1993)

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY A

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY A

N. M. Harwood and G. G. Swinerd

10 10 10

> 0.0000590.0024500.0000500.0013540.000077

5400.067330.000165400.134040.000175400.164580.00025

285.0949 269.46810.3033

 $\begin{array}{c} 0.0005 \\ 149.4325 \\ 0.0005 \\ 159.0242 \\ 0.0006 \end{array}$

 $\begin{array}{c} 97.46462 \\ 0.00069 \end{array}$ $\begin{array}{c} 97.46135 \\ 0.00089 \end{array}$

 $\begin{array}{c} 0.000\,005 \\ 0.002\,055 \\ 0.000\,008 \end{array}$

6946.40656946.4326

0.0002

29 Oct. 86

46732

89 69 2

0.1254194.0869

51

0.40

608

	D	10	10	10	Ç	10	10	5	10	10		10		10		10		10		10		10		10		10		10	Ç
	N	98	89	51	5	49	56	5	10	72		65		22		72		22		100		28		72		55		63	ī
	e	0.48	0.37	0.33		0.41	0.40	06.0	76.0	0.38		0.43		0.73		0.38		0.45		0.76		0.54		0.76		0.34		0.37	9
	M_3		-							1										1									
	M_2	0.000718	0.000908	$0.000052\ 0.001272$	0.000057	0.002358 0.000066	0.003789	0.000064	0.000141	0.000570	0.000062	-0.001701	0.000078	-0.001870	0.000078	-0.000235	0.000057	0.000473	0.000053	0.000830	0.000107	0.001607	0.000086	0.003371	0.000112	0.003751	0.000059	0.002450	0.000050
	M_1	5399.70707	5399.72454	$0.00013 \\ 5399.74583$	0.00016	0.0001977973	5399.84185	0.00018	0.099.914.00	5399.95341	0.00016	5399.93769	0.00023	5399.89937	0.00029	5399.87903	0.00014	5399.88563	0.00018	5399.90136	0.00027	5399.93304	0.00030	5399.98885	0.00026	5400.06733	0.00016	5400.13404	0.00017
	$M_{ m o}$	272.1707	262.4306	0.0796 258.4964	0.0992	267.0016 0.3393	289.0143	0.2975	0.09715	299.3448	0.0955	291.3247	0.1551	280.0647	0.1062	267.8171	0.1278	254.5636	0.1198	242.7716	0.2148	233.1832	0.1779	230.2878	0.2564	242.2853	0.2938	269.4681	0.3033
Table 2. (cont.)	Э	43.3505	16.4104	0.0799 343.8492	0.0990	299.1025 0.3386	241.3228	0.2970	0.0903	161.4971	0.0958	135.1774	0.1558	111.7781	0.1071	89.0362	0.1284	67.2539	0.1202	44.1271	0.2158	19.0189	0.1779	347.6343	0.2558	302.0546	0.2932	242.0511	0.3029
Tak	G	5.4362	15.0406	0.0005 24.6439	0.0005	$34.2479 \\ 0.0006$	43.8544	0.0006	0.0004 0.0004	63.0704	0.0005	72.6775	0.0007	82.2792	0.0004	91.8803	0.0005	101.4726	0.0007	111.0635	0.0011	120.6550	0.0011	130.2466	0.0010	139.8390	0.0005	149.4325	0.0005
	i	97.47811	97.47599	$0.00061 \\ 97.47501$	0.00064	97.47498 0.00084	97.47626	0.00084	0.00057	97.47926	0.00072	97.47554	0.00091	97.47186	0.00042	97.46571	0.00076	97.46327	0.00069	97.46324	0.00126	97.46107	0.00088	97.46178	0.00076	97.46410	0.00076	97.46462	0.00069
	o.	0.003748	0.003075	$\begin{array}{c} 0.0000008 \\ 0.002354 \end{array}$	0.000008	0.0001717	0.001625	0.000007	0.002148 0.000007	0.002830	0.000000	0.003404	0.000000	0.003765	0.000003	0.003863	0.000004	0.003722	0.000005	0.003344	0.000012	0.002774	0.000012	0.002106	0.000000	0.001473	0.000005	0.001442	0.000005
	a	6946.7984	6946.7834	0.0001 6946.7652	0.0001	6946.7361 0.0002	6946.6829	0.0002	0.040.0209	6946.5872	0.0001	6946.6007	0.0002	6946.6337	0.0002	6946.6512	0.0001	6946.6456	0.0002	6946.6321	0.0002	6946.6050	0.0003	6946.5572	0.0002	6946.4898	0.0001	6946.4326	0.0001
	MJD date	54 46572 99 May 86		1 Jun. 86 $56 + 46592$		57 46602 21 Jun. 86	58 46612	1 Jul. 86		60 46632	21 Jul. 86	61 46642	31 Jul. 86	62 46652		63 46662	20 Aug. 86	64 46672	30 Aug. 86	65 46682	9 Sep. 86	66 46692	$19 \mathrm{ Sep. } 86$	67 46702	$29 \mathrm{ Sep. } 86$	68 46712	9 Oct. 86	69 + 6722	19 Oct. 86

										7	he	0	rbi	t o	f N	<i>let</i>	eor	. 2	8												60	9	
10	10	10	Ç	10	10	,	10	10		10	-	10	9		10	•	œ		10	•	10	10		10		10		10		10	,	10	
48	62	72	ì	c/	55	1	20	50		64	ì	19	Ç	#£	67	5	53		91	(96	%		58		71		59		65	3	96	
0.77	0.52	0.48	0	0.60	0.49	(0.46	0.65		0.45	9	0.33	0.94	1.04 To:-0	0.47		0.41		0.75	(0.80	0.76		0.57		0.50		0.30		0.32	0	0.35	
	1	l													1							I										1	
-0.001099	-0.000668	$0.000070 \\ 0.001501$	0.000045	0.000 655 0.000 009	0.001350	0.000063	0.002385	0.003496	0.000094	0.003799	0.000059	0.001904	0.000054	-0.000010	-0.000057	0.000046	-0.001256	0.000048	0.000098	0.000005	0.000941	0.000 043	0.000063	0.002740	0.000108	0.004116	0.000073	0.004028	0.000051	0.003497	0.000040	0.000971	0.000 vv
5400.16759	5400.14719	$0.00018 \\ 5400.15766$	0.00018	5400.17884 0.00002	5400.20056	0.00018	5400.24031	5400.29896	0.00026	5400.37359	0.00017	5400.43545	0.00015	0400.44000	0.000 IS 5400 41889	0.00013	5400.39010	0.00025	5400.37565	0.00002	5400.38526	0.000 IS 5400 412.37	0.00007	5400.44906	0.00027	5400.52140	0.00015	540		5400.68129	0.00011	5400.72892	O.UUU 10
285.0960	278.1100	0.1557 267.7243	0.0763	$258.4917 \\ 0.0726$	250.6880	0.1687	242.9678	237.6263	0.1650	240.4320	0.1126	256.6449	0.2480	282.4948	0.2020	0.1023	300.6680	0.0923	296.1636	0.0461	290.9715	0.0458 985 3799	0.0293	281.4824	0.1216	277.8909	0.0851	279.8041	0.0724	290.6818	0.1210	312.1516	0.2240
161.9205	0.2459 136.6037	$\begin{array}{c} 0.1563 \\ 114.6021 \end{array}$	0.0764	$91.6645 \\ 0.0726$	67.4700	0.1695	43.4975	0.117.9 17.6363	0.1650	344.3119	0.1123	298.3143	0.2475	243.0017	0.2014	0.1026	168.5190	0.0924	130.9044	0.0463	106.0037	0.0457 81 6835	0.0285	55.9592	0.1218	30.4935	0.0853	0.3204	0.0722	321.9859	0.1206	273.7357	0.2254
168.6146	0.0015	0.0006 187.7689	0.0005	197.3454 0.0005	206.9189	0.0006	216.4922	0.0005	0.0010	235.6458	0.0006	245.2260	0.0005	254.8051	0.0000 264 3806	0.0003	272.9959	0.0004	286.3898	0.0003	295.9528	0.0003 305 5130	0.0004	315.0710	0.0010	324.6308	0.0006	334.1919	0.0005	343.7521	0.0004	353.3120	0.000
97.45331	97.44949	0.00101 97.44785	0.00015	97.44668	97.44727	0.00076	97.44647	0.00070 97.44796	0.00128	97.45150	0.00076	97.45270	0.00076	97.45067	0.000 77	0.00018	97.44428	0.00026	97.43892	0.00018	97.44021	0.00023 97.43605	0.00018	97.43824	0.00115	97.43588	0.00079	97.43788	0.00068	97.43869	0.00057	97.43785	0.00077
0.002690	$0.000012 \\ 0.003326$	$\begin{array}{c} 0.000010 \\ 0.003819 \end{array}$	0.000003	0.003994	0.003934	0.000000	0.003585	0.003001	0.000015	0.002325	0.000000	0.001800	0.000005	0.001833	0.000000	0.000 ± 31	0.003151	0.000004	0.004020	0.000004	0.004386	0.000004	0.000007	0.004337	0.000010	0.003856	0.000010	0.003170	0.000007	0.002525	0.000000	0.002234	0.00004
6946.4041	0.0003	0.0002 6946.4128	0.0002	6946.3946	6946.3760	0.0002	6946.3420	0.0002	0.0002	6946.2276	0.0001	6946.1745	0.0001	0946.1650	0.0002	0.0000	6946.2136	0.0002	6946.2261	0.0000	6946.2179	0.0002	0.0001	6946.1632	0.0002	6946.1012	0.0001	6946.0319	0.0001	6945.9641	0.0001	6945.9233	0.0002
71 46742	8 Nov. 72 46752	sub. 18 Nov. 86 73 46762		74 46772 80	75 46782		76 46792	28 Dec. 80 77 46802	•	78 46812					6 Feb. 81 81 46849				83 46865			21 Mar. 87 85 46885			10 Apr. 87	87 46905	20 Apr. 87	88 46915	30 Apr. 87	89 + 6925		90 46935	20 May 87

Phil. Trans. R. Soc. Lond. A (1993)

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY A

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY A

Table 2. (cont.)

610

N	. М.	Har	wood	and	G.	G.	Sw	rinerd
		_	_	_	_		_	_

							N.	M	. <i>I</i> .	Ia	rw		d		d	G.	G.	S	wi	ne	rd												
D	10		10	7	2	10		10		10		10		10		10		10		10		10		10		10		10		10		10	
N	42		46	,	4	65	,	58		47		43		49		81		77		100		94		100		75		89		20		65	
ę	0.34		0.40	3	0.41	0.30		0.32		0.46		0.46		0.55		0.47		0.38		0.74		0.58		0.71		0.79		0.55		0.24		0.35	
M_3																1				1		1											
M_2	-0.000769	0.000068	-0.001300	0.000058	0.000731	0.000070	0.000038	0.000662	0.000051	0.001381	0.000076	0.003152	0.000084	0.003027	0.000113	0.004496	0.000061	0.005153	0.000052	0.003247	0.000010	0.001667	0.000084	0.000112	0.000014	-0.000244	0.000031	0.001883	0.000077	0.002807	0.000043	0.004001	0.000058
M_1	5400.73327	0.00018	5400.70541	0.00017	5400.68071	0.00022 540067703	0.00010	5400.68218	0.00015	5400.70161	0.00019	5400.74605	0.00025	5400.80505	0.00031	5400.88393	0.00016	5400.98072	0.00014	5401.05883	0.00005	5401.11429	0.00011	5401.12733	0.00005	5401.12344	0.00009	5401.14443	0.00024	5401.18678	0.00012	5401.25303	0.00015
M_0	335.1789	0.1703	347.0262	0.0819	351.1311	0.0901 351.2352	0.0679	349.5798	0.0850	347.4100	0.1287	346.5176	0.1260	347.1405	0.0852	353.3752	0.0788	7.8822	0.1246	31.2836	0.0633	55.7735	0.0964	68.5475	0.0404	76.6651	0.0613	81.3988	0.0736	85.3212	0.0697	88.2039	0.0365
Э	224.1668	0.1699	185.6309	0.0816	154.5525	0.0906	0.0682	101.8735	0.0854	77.0559	0.1294	51.2475	0.1268	24.4866	0.0848	352.7629	0.0784	313.6609	0.1242	266.6086	0.0629	219.1223	0.0970	183.6897	0.0405	152.9284	0.0617	125.5724	0.0738	99.3655	0.0700	74.7402	0.0362
C	2.8726	0.0006	12.4281	0.0006	21.9777	0.000 <i>1</i> 31.5225	0.0004	41.0649	0.0005	50.6042	0.0007	60.1445	0.0007	69.6854	0.0009	79.2298	0.0006	88.7750	0.0005	98.3213	0.0001	107.8703	0.0001	117.4153	0.0001	126.9541	0.0003	136.4894	0.0006	146.0194	0.0004	155.5441	0.0004
••	97.43334	0.00103	97.42991	0.00076	97.42577	0.00096 97.42244	0.00057	97.42284	0.00068	97.42141	0.00092	97.42057	0.00094	97.42271	0.00100	97.42420	0.00084	97.42471	0.00060	97.42560	0.00004	97.42630	0.00012	97.42034	0.00007	97.41467	0.00019	97.41287	0.00065	97.40695	0.00055	97.40473	0.00061
w	0.002558	0.000000	0.003207	0.000011	0.003 943	$0.000010 \\ 0.004535$	0.000005	0.004888	0.000004	0.004978	0.000000	0.004750	0.000000	0.004206	0.000007	0.003503	0.000000	0.002895	0.000000	0.002654	0.000004	0.003088	0.000000	0.003748	0.000000	0.004428	0.000005	0.004943	0.000004	0.005146	0.000003	0.005099	0.000003
a	6945.9197	0.0002	6945.9437	0.0001	0945.9049	0.0002	0.0001	6945.9637	0.0001	6945.9471	0.0002	6945.9091	0.0002	6945.8584	0.0003	6945.7908	0.0001	6945.7078	0.0001	6945.6409	0.0000	6945.5933	0.0001	6945.5823	0.0000	6945.5858	0.0001	6945.5678	0.0002	6945.5317	0.0001	6945.4749	0.0001
MJD date	91 46945	$30~\mathrm{May}~87$				19 Jun. 87 94 46975		$95\ 46985$	9 Jul. 87	$96\ 46995$		97 47005	29 Jul. 87	98 47015	8 Aug. 87	99 47025		100 47035		101 47045		102 47055		103 47065								107 47105	6 Nov. 87

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL A TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL A TRANSACTIONS SOCIETY

													7	Γh	e c	rb	it	of	M	ete	eor	2	8													61	.1	
10	9	1	10		12		10		10		10		10		10		16		10		10		10		10		10		10		10		10		10		10	
50	49	1	36		20		44		50		46		52		48		47		59		64		95		58		95		63		57		63		53		89	
0.33	0.49		0.38		0.39		36640.70		0.29		0.35		0.29		0.25		0.67		0.35		0.42		0.98		0.64		0.96		1266 0.33)218	0.76		0.46		0.43		0.49	
							0.0006664	0.0000652	1																				-0.0004266	0.000021	1						1	
0.003110	0.000062	0.000086	0.003650	0.000074	0.005468	0.000037	0.006945	0.000189	0.007884	0.000044	0.007583	0.000052	0.005485	0.000042	0.004983	0.000044	0.003406	0.000044	0.002012	0.000055	0.001769	0.000045	0.007580	0.000077	0.007109	0.000091	0.005473	0.000056	0.005402	0.000056	0.006831	0.000105	0.004714	0.000072	0.004063	0.000059	0.006213	0.000059
5401.32979	0.00017 540140766	0.00019	5401.49241	0.00019	5401.59860	0.00013	5401.73295	0.00088	5401.90166	0.00012	5402.08029	0.00016	5402.20314	0.00012	5402.30930	0.00012	5402.41543	0.00021	5402.47372	0.00015	5402.51021	0.00016	5402.57502	0.00027	5402.70864	0.00023	5402.81861	0.00024	5402.95540	0.00034	5403.03415	0.00032	5403.15685	0.00017	5403.24208	0.00019	5403.35038	0.00020
93.9402	0.0842	0.0905	113.2582	0.1086	140.1930	0.2036	181.0978	0.3940	207.3196	0.0649	227.1531	0.0768	243.2800	0.0769	258.0428	0.0738	278.3205	0.2084	300.7285	0.0933	322.1507	0.0509	352.3626	0.2626	31.5290	0.3478	76.7303	0.0835	111.2903	0.0710	139.2769	0.1460	164.5908	0.0985	188.5784	0.1072	212.8478	0.1153
48.0037	0.0847	0.0909	349.0115	0.1080	299.8504	0.2029	236.6267	0.3928	194.6851	0.0648	160.8397	0.0772	132.2409	0.0773	106.1199	0.0742	72.5020	0.2096	37.8385	0.0938	7.4123	0.0502	328.5588	0.2611	281.8819	0.3470	230.4207	0.0840	190.7299	0.0707	158.6719	0.1465	130.4047	0.0989	104.4637	0.1077	79.1370	0.1158
165.0669	0.0005	0.0007	184.1139	0.0007	195.5410	0.0006	207.9251	0.0012	217.4547	0.0004	226.9894	0.0006	236.5274	0.0005	246.0686	0.0004	258.4731	0.0012	270.8735	0.0005	280.4077	0.0002	289.9369	0.0003	299.4640	0.0010	308.9822	0.0001	318.4969	0.0005	328.0078	0.0011	337.5130	0.0007	347.0162	0.0007	356.5153	0.0007
97.40450	0.00080 9740372	0.00099	97.40113	0.00093	97.40238	0.00074	97.40635	0.00177	97.40835	0.00057	97.41238	0.00082	97.41390	0.00061	97.41449	0.00056	97.41494	0.00102	97.40960	0.00064	97.40881	0.00013	97.40474	0.00026	97.39607	0.00109	97.39701	0.00019	97.39031	0.00071	97.38657	0.00164	97.38592	0.00091	97.38227	0.00099	97.37917	0.00109
0.004798	0.000006	0.000012	0.003434	0.000011	0.002697	0.000006	0.002666	0.000015	0.003182	0.000007	0.003880	0.000000	0.004453	0.000006	0.004766	0.000003	0.004729	0.000000	0.004134	0.000008	0.003445	0.000005	0.002749	0.000004	0.002393	0.000008	0.002722	0.000003	0.003288	0.000000	0.004022	0.000013	0.004608	0.000000	0.004951	0.000005	0.004985	0.000005
6945.4092	0.0001	0.0002	6945.2699	0.0002	6945.1788	0.0001	6945.0636	0.0008	6944.9191	0.0001	6944.7660	0.0001	6944.6607	0.0001	6944.5698	0.0001	6944.4788	0.0002	6944.4290	0.0001	6944.3978	0.0001	6944.3423	0.0002	6944.2280	0.0002	6944.1338	0.0002	6944.0168	0.0003	6943.9495	0.0003	6943.8444	0.0001	6943.7715	0.0002	6943.6788	0.0002
108 47115	16 Nov. 87 109 47125		110		111 47147		112		× 113 47170		114	20 Jan. 88	115 47190	30 Jan. 88	116 47200	9 Feb. 88	117 47213	22 Feb. 88	118 47226	6 Mar. 88	119 47236	16 Mar. 88	120 47246	26 Mar. 88	121 47256	5 Apr. 88			123 47276	25 Apr. 88	124 47286	5 May 88	$125\ 47296$	15 May 88	126 47306	25 May 88	127 47316	4 Jun. 88

Table 2. (cont.)

2								Ν	V. J	И.	H	ar	we	000	l a	ine	16	₹. ¢	G.	S_{i}	wii	ne	rd												
	D	10		10		10		10		10		10		10		10		10		10		00		10		10		10	,	10		10		10	
	N	99		69		59		09		89		$\tilde{51}$		99		54		50		63		09		85		67	1	55	1	28		63		80	
	e	0.48		50.40	2	0.27		0.49		0.22		0.19		0.33		0.34		0.47		0.45		0.49		0.56		0.72		0.32		0.67		0.28		5 0.40	∞
	M_3			0.0002625	0.000021																											0.0002370	0.000019	0.0002195	0.0000218
	M_2	0.006022	0.000064	0.005364	0.000050	0.005502	0.000048	0.003677	0.000071	0.005642	0.000039	0.007079	0.000030	0.007552	0.000050	0.007357	0.000048	0.013146	0.000080	0.009967	0.000067	0.012691	0.000120	0.020678	0.000098	0.018771	0.000129	0.015168	0.000052	0.021057	0.000128	0.023157	0.000053	0.020428	0.000055
	M_{1}	5403.48969	0.00016	5403.58588	0.00039	5403.71581	0.00011	5403.81899	0.00015	5403.91116	0.00011	5404.04150	0.00000	5404.18465	0.00014	5404.31533	0.00012	5404.53309	0.00024	5404.76144	0.00016	5404.95439	0.00023	5405.41511	0.00021	5405.84755	0.00033	5406.22165	0.00014	5406.56322	0.00033	5406.98490	0.00029	5407.43440	0.00037
	M_0	238.8341	0.0677	267.6989	0.0531	301.8826	0.0519	346.4959	0.1192	39.8793	0.1053	94.5055	0.0788	139.9295	0.0653	179.1840	0.0669	216.3931	0.1365	254.4325	0.1241	290.0743	0.1477	348.0983	0.1341	41.3571	0.1553	105.2084	0.1247	184.1639	0.4019	266.0600	0.1261	345.1367	0.0740
	3	53.3847	0.0680	25.9610	0.0531	354.3313	0.0519	313.4463	0.1191	264.6869	0.1051	215.8103	0.0785	177.5106	0.0653	146.7637	0.0670	119.6656	0.1373	94.1613	0.1247	71.5858	0.1485	36.5468	0.1348	5.5917	0.1552	328.1482	0.1244	278.9364	0.4007	230.6985	0.1257	189.7757	0.0740
	C_{i}	6.0124	0.0007	15.5108	0.0005	25.0073	0.0004	34.5028	0.0005	43.9992	0.0004	53.4948	0.0003	62.9876	0.0005	72.4805	0.0005	81.9730	0.0008	91.4626	0.0007	100.0017	0.0008	112.3352	0.0009	121.8203	0.0011	131.3020	0.0005	140.7785	0.0011	150.2528	0.0005	159.7264	0.0000
	.9	97.38031	0.00096	97.37714	0.00081	97.37642	0.00055	97.37404	0.00044	97.37595	0.00055	97.37273	0.00049	97.37133	0.00063	97.37062	0.00064	97.36723	0.00119	97.36550	0.00087	97.36392	0.00094	97.35943	0.00093	97.35426	0.00130	97.35155	0.00066	97.34997	0.00121	97.34600	0.00057	97.34582	0.00067
	ø	0.004681	0.000007	0.004119	0.000000	0.003353	0.000007	0.002619	0.000004	0.002398	0.000003	0.002754	0.000004	0.003470	0.000005	0.004168	0.000000	0.004683	0.000008	0.004893	0.000005	0.004780	0.000000	0.004175	0.000011	0.003479	0.000018	0.002837	0.000007	0.0024444	0.000000	0.002678	0.000005	0.003311	0.000000
	B	6943,5595	0.0001	6943.4772	0.0003	6943.3660	0.0001	6943.2777	0.0001	6943.1987	0.0001	6943.0872	0.0001	6942.9647	0.0001	6942.8528	0.0001	6942.6665	0.0002	6942.4710	0.0001	6942.3059	0.0002	6941.9117	0.0002	6941.5417	0.0003	6941.2217	0.0001	6940.9295	0.0003	6940.5689	0.0003	6940.1844	0.0003
	$\overline{ ext{MJD}}$	8 47326			24 Jun. 88	0 47346	4 Jul. 88	1 47356	14 Jul. 88	2 47366	24 Jul. 88	133 47376	3 Aug. 88	4,	13 Aug. 88		23 Aug. 88	$136\ 47406$	2 Sep. 88	4.	12 Sep. 88		21 Sep. 88	139 47438	4 Oct. 88	140 47448	14 Oct. 88	47458	24 Oct. 88	12 47468	3 Nov. 88	13 47478	13 Nov. 88	14 47488	23 Nov. 88
		128		12		130		131		132		13		134		135				137		138		5		14		141		142		143		144	

						Tk	ie (orl	bit	oj	c M	[et	eo	r 2	28				
10		10		10		10		10		10		10		10		10		10	
85		20		65		65		73		71		99		$\tilde{56}$		63		73	
- 0.43		-0.49		$0.0006171 \ 0.47$	0.0000296	-0.45		- 0.50		-0.49		-0.45		-0.40		$0.0007248 \ 0.41$	0.0000330	0.0002714 0.43	0.0000246
0.025017	0.000072	0.029563				0.024816	0.000072	0.031821	0.000029	0.037514	0.000096	0.030917	0.000084	0.022647	0.000081	1		0.025856 -	0.000061
												5418.43690							
60.2513	0.0949	136.3982	0.1395	267.5450	0.1306	190.1233	0.0788	246.0286	0.1024	303.8376	0.1271	47.9124	0.1260	219.8577	0.1577	142.0403	0.1064	46.7824	0.1328
157.1491	0.0954	128.3772	0.1405	85.4883	0.1313	2.6581	0.0789	226.8020	0.1020	130.5527	0.1277	57.6280	0.1267	329.5223	0.1572	193.5721	0.1062	109.3116	0.1335
169.2064	0.0007	178.6893	0.0006	193.8694	0.0008	221.3989	0.0007	250.8540	0.0005	277.4857	0.0007	304.1412	0.0008	330.8131	0.0008	358.4485	0.0007	25.1535	0.0006
97.34699	0.00080	97.34963	0.00081	97.35147	0.00095	97.34794	0.00081	97.35054	0.00019	97.35037	0.00093	97.34833	0.00113	97.34560	0.00106	97.34656	0.00067	97.34692	0.00088
0.004036	0.000000	0.004622	0.000000	0.005069	0.000000	0.003705	0.000011	0.002630	0.000007	0.004490	0.000000	0.004646	0.000007	0.002857	0.000010	0.003105	0.000011	0.004651	0.000000
6939.7938	0.0002	6939.3429	0.0002	6938.5076	0.0004	6936.8423	0.0002	6934.8373	0.0002	6932.5865	0.0002	6930.7903	0.0002	6929.3601	0.0002	6927.8136	0.0004	6926.4879	0.0003
145 47498	3 Dec. 88	146 47508	13 Dec. 88	147 47524	29 Dec. 88	148 47553	27 Jan. 89	149 47584	27 Feb. 89	150 47612	27 Mar. 89	151 47640	24 Apr. 89	$152\ 47668$	22 May 89	153 47697	20 Jun. 89	154 47725	18 Jul. 89

rates of change of the orbital inclination and eccentricity due to resonance may be expressed in terms of lumped harmonics $\bar{C}_m^{q,k}$ and $\bar{S}_m^{q,k}$ of the geopotential. In this section the standard theory is outlined and the lumped harmonics are defined.

The expression for the longitude-dependent part of the geopotential in normalized form for any exterior point is (Kaula 1966)

$$V = \frac{\mu}{r} \sum_{l=2}^{\infty} \sum_{m=1}^{l} \left(\frac{R}{r}\right)^{l} P_{l}^{m}(\cos \Psi) \{ \overline{C}_{lm} \cos m \lambda + \overline{S}_{lm} \sin m \lambda \} N_{lm}, \tag{2}$$

where r is the distance from the Earth's centre, Ψ is co-latitude, λ is longitude, R the mean equatorial radius of the Earth and μ its gravitational constant. $P_{lm}(\cos \Psi)$ is the associated Legendre function of degree l and order m, \bar{C}_{lm} and \bar{S}_{lm} are normalized tesseral harmonic coefficients, and the normalizing factor N_{lm} is given, for m > 0, by

$$N_{lm}^2 = 2(2l+1)(l-m)!/(l+m)!. (3$$

If the satellite executes β revolutions while the Earth rotates α times the orbit experiences $\beta:\alpha$ resonance. The corresponding perturbations in the orbital elements depend upon the resonance angle, Φ , given by

$$\Phi = \alpha(w+M) + \beta(\Omega - \theta), \tag{4}$$

where the orbit elements have their usual notation and θ is the sidereal angle. Exact resonance occurs when $\dot{\Phi} = 0$. In the case of Meteor 28, we are interested in 15thorder resonance so $\alpha = 1, \beta = 15$.

(b) The perturbations in inclination and eccentricity due to resonance Lagrange's planetary equations for the inclination, i, and eccentricity, e, are

$$\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{1}{na^2(1 - e^2)^{\frac{1}{2}}} \left[\cot i \frac{\partial U}{\partial w} - \csc i \frac{\partial U}{\partial \Omega} \right], \quad \frac{\mathrm{d}e}{\mathrm{d}t} = \frac{(1 - e^2)^{\frac{1}{2}}}{na^2e} \left[(1 - e^2)^{\frac{1}{2}} \frac{\partial U}{\partial M} - \frac{\partial U}{\partial w} \right], \quad (5)$$

where n is the mean motion and U is the disturbing potential. The expansion of the geopotential, V, into spherical harmonics (equation (2)) may be written in terms of keplerian elements. If the partial derivatives of V are then found and substituted into equations (5), the rates of change in the inclination and eccentricity may be found. The perturbations induced by each pair of harmonic coefficients $\bar{C}_{lm}, \bar{S}_{lm}$ near resonance are given by (Allan 1973; Gooding & King-Hele 1989)

$$\begin{split} \frac{\mathrm{d}i}{\mathrm{d}t} &= \frac{n(1-e^2)^{-\frac{1}{2}}}{\sin i} \left(\frac{R}{a}\right)^l \bar{F}_{lmp} \, G_{lpq}(k\cos i - m) \\ &\qquad \qquad \times \mathrm{Re} \, \{\, \mathbf{j}^{l-m+1}(\bar{C}_{lm} - \mathbf{j}\bar{S}_{lm}) \exp \, [\, \mathbf{j}(\gamma \mathbf{\Phi} - qw)\,] \}, \quad (6) \\ \frac{\mathrm{d}e}{\mathrm{d}t} &= \frac{n(1-e^2)^{\frac{1}{2}}}{e} \left(\frac{R}{a}\right)^l \bar{F}_{lmp} \, G_{lpq}[(k+q)\,(1-e^2)^{\frac{1}{2}} - k] \\ &\qquad \qquad \times \mathrm{Re} \, \{ \mathbf{j}^{l-m+1}(\bar{C}_{lm} - \mathbf{j}\bar{S}_{lm}) \exp \, [\, \mathbf{j}(\gamma \mathbf{\Phi} - qw)\,] \}, \end{split}$$

where $\bar{F}_{lmp}(i)$ is Allan's normalized inclination function (Allan 1973; Gooding & King-Hele 1989), $G_{lpq}(e)$ is the eccentricity function (Kaula 1966), $j = \sqrt{-1}$ and Re denotes the real part. The indices, γ , q, k and p are integers with $\gamma = 1, 2, 3, \ldots, q =$ $0, \pm 1, \pm 2$ and are related by $m = \gamma \beta, k = \gamma \alpha - q$ and 2p = l - k. The suffix, m, of a pair of resonant harmonics \bar{C}_{lm} , \bar{S}_{lm} is determined by the choice of γ , the $\gamma = 1$ term The orbit of Meteor 28

615

being dominant. Successive tesseral harmonic coefficients which arise for a given (γ, q) may be grouped into lumped harmonic coefficients defined by

$$\bar{C}_{m}^{q,k} = \sum_{l} Q_{l}^{q,k} \bar{C}_{lm}, \quad \bar{S}_{m}^{q,k} = \sum_{l} Q_{l}^{q,k} \bar{S}_{lm},$$
 (7)

where l increases in steps of 2 from its minimum value l_0 . The Q factors are given by (Gooding & King-Hele 1989)

$$Q_l^{q,k} = B_l \bar{F}_{lmp} G_{lpq} (-1)^{(l-l_0)/2} / B_{l_0} \bar{F}_{l_0 m p_0} G_{l_0 p_0 q}, \tag{8}$$

where $B_l=n(1-e^2)^{-\frac{1}{2}}(R/a)^l$, $p_0=\frac{1}{2}(l_0-k)$. The $Q_l^{q,\,k}$ may be regarded as constant for a given satellite and we note from the definition that $Q_{l_0}^{q,\,k}=1$.

(c) Methodology

The computer program THROE (Gooding 1971) is used to obtain the lumped harmonic coefficients by fitting the observed variations in inclination or eccentricity due to resonance to that predicted by equations (6). Before doing this the observed variations must be cleared of all other significant perturbations. The linear equations linking the tesseral harmonics to the lumped harmonics are determined computationally. If a similar analysis is carried out for a sufficient number of resonant satellites at different inclinations, the resulting set of linear equations may be solved to determine the individual tesseral harmonics. This final step is not, however, the object of this paper.

5. The perturbations

(a) Introduction

Before the variations in inclination and eccentricity can be analysed for the effects of geopotential resonance all other significant perturbations must be removed from the data. These include the direct gravitational attraction due to the Sun and Moon, the perturbation due to the Earth's zonal and $J_{2,2}$ tesseral harmonics, air drag, solid and ocean tides and solar radiation pressure. The perturbations that are induced directly or indirectly by the Sun are all resonant due to the Sun-synchronous nature of the orbit. It was the removal of these perturbations, which under non-solar resonant conditions are generally negligible, that proved the greatest challenge in this analysis. The perturbations due to atmospheric rotation and the motion of the Earth's equatorial plane (precession) were removed by the computer program THROE in the fitting process. The perturbations due to atmospheric tides and solar radiation reflected from the Earth were estimated to be negligible and hence were not considered. If all the above-mentioned perturbations in inclination and eccentricity are removed successfully then the remaining variations will be those due to the 15th-order resonance with the geopotential.

(b) Zonal harmonic, luni-solar and tesseral harmonic perturbations

The computer program PROD (Cook 1973) was used to calculate the perturbations in inclination and eccentricity due to luni-solar and zonal harmonic effects using one-day integration steps and restarts, where possible, every 20 days. The restarts were necessary since the integration in PROD drifts off if longer periods are used, due to the influence of other perturbations neglected in the program. The change in inclination due to the tesseral harmonic $J_{2,2}$ was computed by the program

N. M. Harwood and G. G. Swinerd

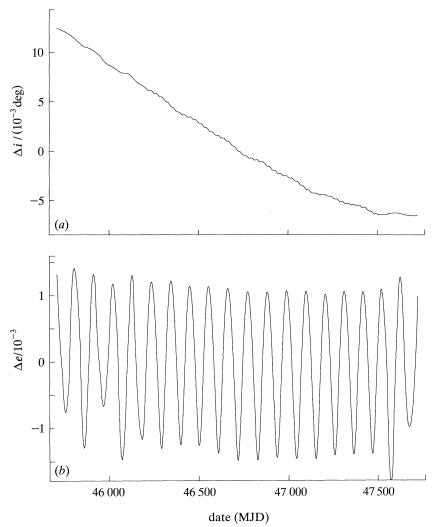


Figure 1. The combined perturbations due to zonal harmonics, the $J_{2,2}$ tesseral harmonic and direct lunisolar attraction on the inclination (a) and that due to zonal harmonics and direct lunisolar attraction on the eccentricity (b).

MACPROP as part of the orbit determination process and these values were removed from the data. The combined effects of zonal harmonics, the $J_{2,\,2}$ tesseral harmonic and luni-solar attraction on the inclination is shown in figure 1a and that due to zonal harmonics and luni-solar attraction on the eccentricity in figure 1b. As can be seen the perturbations in both the inclination and eccentricity are highly significant. The total change in the inclination is of the order of 0.2° over the period of the analysis and this is almost entirely caused by the near-solar resonance in solar gravitational attraction. The variation in the eccentricity is periodic with a peak-to-peak amplitude of approximately 0.003 and is predominantly due to the zonal harmonic perturbations.

Table 3. Amplitudes and periods of the principal solid-Earth tide perturbations at the beginning

The orbit of Meteor 28

and end of the analysis and at exact 15th-order geopotential resonance

				beginning of analysis (MJD 45707)		exact geopotential resonance (MJD 47353)		end of analysis (MJD 47725)	
l	m	p	q tide	amp/deg	period/days	$\frac{1}{1}$	period/days	amp/deg	period/days
solar	tide	es							
2	1	0	$-1 S_1$	-6.1×10^{-5}	-34303.9	$-1.7 \times 10^{-}$	-9924.3	-2.0×10^{-5}	-11412.5
2	1	0	$0 P_1$	7.7×10^{-5}	-361.4	$7.3 \times 10^{-}$	-352.3	7.4×10^{-5}	-353.9
2	1	1	$0 K_1^{\tilde{s}}$	7.5×10^{-5}	369.2	$7.5 \times 10^{-}$	379.2	7.5×10^{-5}	377.3
2	1	1	$1 P_1$	-1.8×10^{-4}	-34614.5	-4.9×10^{-1}	-9950.2	-5.7×10^{-5}	-11446.7
2	2	0	$-1 T_{2}$	1.2×10^{-5}	373.2	$1.3 \times 10^{-}$	5 394.2	1.2×10^{-5}	390.2
2	2	0	$0 S_2$	6.6×10^{-2}	-17229.3	$1.9 \times 10^{-}$	-4968.6	2.2×10^{-2}	-5714.8
2	2	0	$1 R_2$	8.0×10^{-5}	-357.7	$7.7 \times 10^{-}$	-340.2	7.8×10^{-5}	-343.3
2	2	1		-6.1×10^{-5}	184.6	$-6.3\times10^{-}$	189.6	-6.3×10^{-5}	188.7
luna	r tide	es							
2	1	1	$0 K_1^M$	1.7×10^{-4}	367.3	$1.9 \times 10^{-}$	4 375.3	1.8×10^{-4}	373.8
2	2	0	$0 M_2$			$1.2 \times 10^{-}$		1.2×10^{-4}	
2	2	0	$1 N_2^2$	1.5×10^{-5}		$1.5 \times 10^{-}$	-9.6	1.5×10^{-5}	-9.6
2	2	1	$0 K_2^{M}$			$-2.0 \times 10^{-}$		-1.9×10^{-4}	

(c) Solid-Earth tides

The most significant tidal perturbation of the satellite orbit is that due to solid-Earth tides, the solar tide being most significant due to the Sun-synchronous orbit. The potential due to solid-Earth tides may be written as (Lambeck 1977)

$$\Delta U = \sum_{d=1}^{2} \sum_{l=2}^{\infty} \sum_{m=0}^{l} \sum_{p=0}^{l} \sum_{q=-\infty}^{\infty} \sum_{j=0}^{l} \sum_{q=-\infty}^{\infty} \Delta U_{almpqjg}, \tag{9}$$

where

$$\begin{split} \Delta U_{almpqjg} &= k_l \bigg(\frac{R}{a_d}\bigg)^l \bigg(\frac{R}{a}\bigg)^{l+1} \frac{\mu_d}{a_d} (2-\delta_{0m}) \frac{(l-m)\,!}{(l+m)\,!} F_{lmp}(i_d) F_{lmj}(i) \\ &\qquad \qquad \times G_{lpq}(e_d) \, G_{ljg}(e) \cos{(\nu_{d,\,lmpq} - \nu_{lmjg} + \epsilon_{d,\,lmpq})}, \end{split}$$
 and
$$\nu_{d,\,lmpq} &= (l-2p) \, \omega_d + (l-2p+q) M_d + m(\Omega_d - \theta), \\ \nu_{lmig} &= (l-2j) \, \omega + (l-2j+g) M + m(\Omega - \theta). \end{split}$$

The suffix d (= 1, 2) denotes the Sun and Moon respectively, δ_{0m} is the Kronecker delta, k_l are Love numbers associated with each harmonic l, and the F functions are un-normalized inclination functions (the indices l, m, p, q should not be confused with those used in §4b). The phase term, e, may be assumed equal to zero (Lambeck 1988) and significant perturbations occur only for l=2. Short-periodic terms may be eliminated by setting l-2j+g=0. Furthermore, the eccentricity functions are of the order $\frac{1}{2}e^{|g|}$ and $\frac{1}{2}e^{|g|}$ and so terms beyond $g, q=\pm 1$ are generally negligible. These constraints give j=1, g=0 for the most significant terms.

Substituting the partial derivatives of equation (9) into Lagrange's planetary equations (5) and integrating gives the long-periodic perturbation in inclination due to solid-Earth tides for each d, l, m, p, q, j, g as

$$\Delta i_{almpqjg} = \frac{1}{na^2 \sqrt{(1-e^2)}} [m \csc i - (l-2j) \cot i] \frac{\Delta U_{almpqjg}}{\dot{\nu}_{d, lmpq} - \dot{\nu}_{lmjg}}. \tag{10}$$

Phil. Trans. R. Soc. Lond. A (1993)

N. M. Harwood and G. G. Swinerd

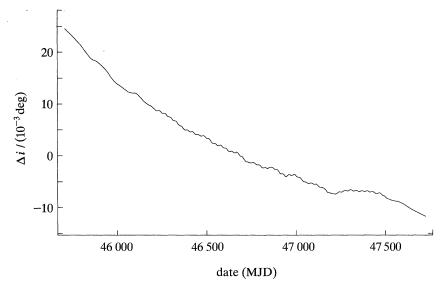


Figure 2. The perturbation in inclination due to solid-Earth tides.

Similarly, for the eccentricity

$$\Delta e_{alm \, pqjg} = \frac{(1 - e^2)^{\frac{1}{2}}}{na^2 e} (l - 2j) \frac{\Delta U_{alm \, pqjg}}{\dot{\nu}_{d, \, lm \, pg} - \dot{\nu}_{lmjg}}. \tag{11}$$

The restriction of significant terms to j=1 and l=2 ensures that the resulting long-period perturbation in e due to solid-Earth tides is negligible.

The value of k_2 used in equation (9) is 0.302. The resulting amplitudes and periods of the perturbation in inclination are shown in table 3 for the beginning and end of the analysis period and at exact 15th-order geopotential resonance. Only the most significant terms are included and it can clearly be seen that the S_2 solar tide has the largest amplitude and that it is near resonant with the orbit. The period of this perturbation is approximately 17000 days at the beginning of the analysis and approximately 6000 days towards the end. It can also be seen that the tides S_1 and P_1 are near-resonant with the orbit and have periods of approximately twice that of S_2 (ca. 35000 days at the beginning of the analysis). These, however, have amplitudes which are less than one-hundredth of that due to S₂. Figure 2 shows the total change in inclination due to the combined effects of the solid-Earth tides. The form of the perturbation is similar with that due to direct solar gravitation and this can be seen by comparing with figure 1a which is dominated by the direct solar gravitational force. This result is to be expected since both share a common origin and hence are intimately related. The amplitude of the tidal perturbation is approximately 20% of that due to the direct solar perturbation and is very significant.

(d) Ocean tides

The perturbations due to ocean tides are estimated to be up to 15% of those due to solid-Earth tides (Lambeck 1988) and so for Meteor 28 they must be taken into account. The treatment is somewhat more complicated than that due to the solid-Earth tides as the effective k_2 and phase lag ϵ (no longer negligible) are frequency dependent.

Phil. Trans. R. Soc. Lond. A (1993)

The orbit of Meteor 28

619

The ocean tide height for any point on the Earth with amplitude $\xi_{\beta}(\psi, \lambda)$ and phase $\chi_{\beta}(\psi, \lambda)$, both of which vary with position, may be written (Hendershott & Munk 1970)

$$\xi_{\beta}(\psi,\lambda,T) = \xi_{\beta}^{0}(\psi,\lambda)\cos\left[2\pi f_{\beta}T - \chi_{\beta}(\psi,\lambda)\right],\tag{12}$$

where T is mean solar time. The frequencies of the tides, f_{β} , are given by

$$2\pi f_{\beta}\,T = \textstyle\sum\limits_{n=1}^{6}n_{i}\,\beta_{i},$$

where the β_i s are the fundamental arguments of the Sun and Moon and are given as (Doodson 1921)

 $\beta_1 = \text{local mean lunar time};$

 $\beta_2 = \text{mean longitude of the Moon};$

 β_3 = mean longitude of the Sun;

 $\beta_4 = \text{longitude of lunar perigee};$

 β_5 = longitude of ascending node of the Moon;

 β_6 = longitude of solar perigee.

There is a correspondence between the n_i of Doodson and the expansion in terms of l, m, p, q for the solid-Earth tides of equation (9) and this is discussed by Lambeck et al. (1973). The phase, χ_{β} , is with respect to the Greenwich meridian. To obtain a global representation of the ocean tide, equation (12) is expanded into spherical harmonics.

The potential, ΔU_{β} , outside the Earth is then given in terms of keplerian elements as (Lambeck 1977)

$$\Delta U_{\beta} = 4\pi G R \rho_{w} \sum_{s} \sum_{t=1}^{s} \sum_{u} \sum_{v} \frac{(1+k_{s}')}{2s+1} \left(\frac{R}{a}\right)^{s+1} D_{\beta, st}^{\pm} F_{stu}(i) G_{suv}(e) \times \cos\left[2\pi f_{\beta} T \pm \nu_{stuv} - \epsilon_{\beta, st}^{\pm} \pm \frac{1}{2}(s-t)\pi\right], \quad (13)$$

where ν_{stuv} is as defined for the solid-Earth tides. The $D^{\pm}_{\beta,\,st}$ and $\epsilon^{\pm}_{\beta,\,st}$ are the amplitude and phase respectively for each s,t and the +, - refer respectively to prograde and retrograde tides. The lunar and solar coordinates enter implicitly through the frequency f_{β} and amplitudes $D^{\pm}_{\beta,\,st}$. The ocean tidal perturbation in inclination due to each tidal component β and s,t,u,v is then given by

$$\begin{split} \Delta i_{\beta,\,stuv} &= ((1-e^2)^{-\frac{1}{2}}/na^2) [(s-2u)\cot i - t\csc i] \, 4\pi \mathrm{GR} \rho_w (1+k_s')/(2s+1) \\ &\times (R/a)^{s+1} D_{\beta,\,st}^{\pm} F_{stu} \, G_{suv} \cos \left[2\pi f_{\beta} \, T \pm \nu_{stuv} - \epsilon_{\beta,\,st}^{\pm} \pm \frac{1}{2} (s-t) \, \pi \right] / (2\pi f_{\beta} \pm \dot{\nu}_{stuv}). \end{split} \tag{14}$$

In a similar manner to that for the solid Earth tides, the perturbation in eccentricity due to ocean tides may be shown to be negligible.

Lambeck has shown (1977) that, unless there is resonance with a retrograde tide, long period perturbations will not occur due to the $D_{\beta, st}^-$. Only the prograde tides need to be considered, the most significant being diurnal (t=1) and semi-diurnal (t=2). The elimination of short-periodic terms requires that $s-2u+\nu=0$ and for small eccentricity we can further assume that terms beyond $\nu=0$ are negligible. These constraints require s to be even, the most significant terms being s=2,4,6. The oceanic parameters $D_{\beta,st}^+$, $\varepsilon_{\beta,st}^+$ are obtained from oceanic models or from other

620

N. M. Harwood and G. G. Swinerd

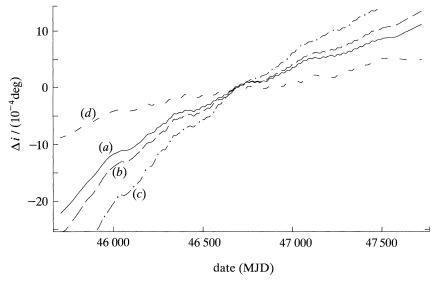


Figure 3. The perturbation in inclination from different ocean tide data and models (a) GEM-T2 data (Marsh et al. 1990), (b) Schwiderski ocean model from spherical decomposition of MERIT standards (Melbourne et al. 1983), (c) results from Moore (1987) Starlette data and (d) Williamson & Marsh (1985) Starlette data.

satellite orbit analyses. Four different sets of parameters have been compared for the total oceanic perturbation in inclination, one derived from an oceanic model and three from satellite derived results. For the oceanic model data the results of Schwiderski (1983) were used by utilizing the spherical harmonic decomposition of Merit Standards (Melbourne et al. 1983). The satellite data are from Williamson & Marsh (1985), Moore (1987) and the Goddard Earth Model, GEM-T2 (Marsh et al. 1990). The values used for the load-deformation Love numbers are $k_2' = -0.3075$, $k_4' = -0.1320, k_6' = -0.0892$. The resulting perturbations due to these different ocean tide models are shown in figure 3. As with the solid-Earth tides the perturbation is almost entirely due to S_2 , which is resonant. The form of the perturbation is similar except that there is a difference in phase, the period of the perturbation being of the order of 10000 days, substantially longer than the time covered by the analysis. It is significant that the data from Williamson & Marsh (1985) for the S_2 tide are approximately 90° different in phase from the other models and a difference in the resulting perturbation is apparent in the figure. The problem of which data set to choose for the perturbation is compounded by uncertainties in the solar radiation pressure perturbation and is discussed in §5e. Best results were, however, obtained from GEM-T2 of which the tidal parameters are very well determined. The resulting amplitudes and periods of the perturbation in inclination calculated from this data set are shown in table 4, again for the beginning and end of the analysis and at exact 15th-order geopotential resonance. The amplitude is of the order of 5-10% of that due to the solid-Earth tides, and is significant. As the solid-Earth tides are well known, the possibility remains to extend the analysis away from the geopotential resonance to give an independent determination of the S_2 ocean tide amplitude and phase. Although the amplitude is still somewhat small, it is worth noting that the period is approximately 17000 days at the beginning of the analysis and in principle the parameters could be determined with good accuracy.

The orbit of Meteor 28

	Table 4. Amplitudes and periods of the principal ocean tide perturbations at the beginning and end of the analysis and at exact 15th-order geopotential resonance	plitudes an	ed periods c	of the princ	cipal ocean ct 15th-ord	ı tide pertu ler geopoter	rincipal ocean tide perturbations at the exact 15th-order geopotential resonance	the beginn nce	ing and e	nd of the a	nalysis anc	l at	
tide	indices for ocean tide expansion	begin	beginning of analysis (MJD 45707)	rsis (MJD 457	707)	exact geo	exact geopotential resonance (MJD 47353)	mance (MJD)	47353)	enc	end of analysis (MJD 47725)	(MJD 47725	<u></u>
	(rev (solar	$\Delta i \beta$, 2 tuv	$\Delta i \beta$, 4tuv	$\Delta i \beta$, $6tuv$	period	$\Delta i eta, 2tuv$	$\Delta i \beta$, 4tuv	$\Delta i eta, 6tuv$	period	$\Delta i eta$, $2 tuv$	$\Delta i \beta$, 4tuv	$\Delta i \beta$, $6tuv$	period
origin	$n_1 \ n_2 \ n_3 \ n_4 \ n_5 \ n_6$	deg	deg	gəp	days	deg	deg	deg	days	deg	deg	deg	days
K ₁ lunar and	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.4×10^{-5}	-1.8×10^{-5}		369.1		$3.4 \times 10^{-5} - 1.9 \times 10^{-5}$		379.2	3.4×10^{-5}	$3.4 \times 10^{-5} - 1.9 \times 10^{-5}$		377.3
P_1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.3×10^{-5}	1	ададаля	-361.4	$-361.4 -1.2 \times 10^{-5}$	I	-	-352.3	-1.2×10^{-5}			-353.9
K_2 lunar and	(0.997.202 rev α 7) 2 2 0 0 0 0 -1.4×10 ⁻⁵ (2.005476 rev α ⁻¹)	-1.4×10^{-5}		I	184.6	$184.6 - 1.5 \times 10^{-5}$		I	189.6	$189.6 - 1.5 \times 10^{-5}$		manare	188.6
solar M_2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.2×10^{-5}	1	Administra	-14.8	1.2×10^{-5}	I	account of the contract of the	-14.7	1.2×10^{-5}	l		-14.7
$S_{\mathbf{z}}$ solar	$(1.932274 \text{ rev d}^{-1})$ 2 2 -2 0 0 0 $(2.000000 \text{ rev d}^{-1})$	3.5×10^{-3}	-3.7×10^{-4}		$9.0 \times 10^{-5} - 17292.4$	1.0×10^{-3}	$1.0 \times 10^{-3} - 1.1 \times 10^{-4}$	2.7×10^{-5}	-4973.9	1.2×10^{-3}	$1.2 \times 10^{-3} - 1.3 \times 10^{-4}$	3.2×10^{-5}	-5721.7

(e) Solar radiation pressure

The perturbation due to solar radiation pressure on the orbit of Meteor 28 was estimated to be of similar magnitude to that due to ocean tides and therefore had to be taken into account. The algorithm used to calculate this perturbation was that due to Aksnes (1976) which actually assumes a spherical spacecraft, but the approximation if sufficiently accurate for the purposes of this analysis. In outline the approach involves finding the shadow exit and entry positions of the satellite in its orbit and, for each revolution, integrating the perturbation between these two limits.

Lagrange's planetary equations may be written in terms of the direction cosines of a force μF , where μ is as defined in §4a. For the inclination and eccentricity these are

where v is the true anomaly and $u = v + \omega$. The force is assumed to be acting along the Sun–Earth line which in turn is assumed to be parallel to the Sun-satellite line. Any component normal to this direction is assumed negligible. The S(v), T(v) and W are the direction cosines of the force μF along the satellite radius vector r, perpendicular to r in the orbital plane and along the orbit normal, respectively. The force is given by

$$\mu F = s(A/m)P(a_{\odot}/r_{\odot})^{2}, \tag{16}$$

where A/m is the cross-sectional area-to-mass ratio of the satellite, $P(\approx 4.65 \times 10^{-6} \text{ N m}^{-2})$ is the force per unit area exerted by the Sun when its geocentric distance r_{\odot} is equal to its mean distance a_{\odot} . The parameter s depends upon the reflection characteristics of the satellite's surface and usually has a value of between 1.0–1.5. The direction cosines S(v), T(v) and W are given by Kozai (1961).

The perturbations in i and e are given in terms of the eccentric anomaly, E, as (Aksnes 1976)

$$\delta i = a^{2} F W (1 - e^{2})^{-\frac{1}{2}} |[-\frac{3}{2} e E + (1 + e^{2}) \sin E - \frac{1}{4} e \sin 2E] \cos w \\ + (1 - e^{2})^{\frac{1}{2}} (\cos E - \frac{1}{4} e \cos 2E) \sin w|_{E_{1}}^{E_{2}},$$

$$\delta e = a^{2} F (1 - e^{2})^{\frac{1}{2}} |\frac{1}{4} S(0) (1 - e^{2})^{\frac{1}{2}} \cos 2E + T(0) (\frac{3}{2} E - 2e \sin E + \frac{1}{4} \sin 2E)|_{E_{1}}^{E_{2}}.$$

$$(17)$$

The limits of the integrations E_1 and E_2 are the shadow exit and entrance eccentric anomalies, respectively. The integration and updating of the orbital elements is performed for each revolution. A search is required to find E_1 and E_2 , the satellite being in shadow if S(v)>0 and $R_E-r\sqrt{(1-s^2(v))}>0$. The radius R_E depends on R (the Earth's equatorial radius), the Earth's flattening f_E and the declinations δ_{\odot} and δ of the Sun and satellite respectively, and is given by (Aksnes 1976)

$$R_{\rm E} = R[1 - f_{\rm E}(\sin \delta + S(v)\sin \delta_{\odot})^2 / (1 - S^2(v))]. \tag{18}$$

Some computer time is saved by noting that the satellite will be in sunlight throughout its orbit if (but not only if) $a(1-e) > R_{\rm E}/|W|$.

The parameters s and A/m are unknown and difficult to determine with any degree of accuracy. The procedure adopted was to lump the two together into a single parameter $S_{AM}(=sA/m)$ and to find an optimal value by minimizing ϵ (the measure of fit parameter used in THROE) during the fitting process. As has been stated in §5d this was further complicated by the necessity of deciding upon the best ocean tide data-set to use. In principle it would have been possible to derive a value for S_{AM}

by analysing the change in semi-major axis due to solar radiation pressure. This perturbation was, however, extremely small (estimated to be of the order of 10 m for the entire period of the analysis) and so was completely 'swamped' by the change due to air drag, which in turn manifests an unknown level of uncertainty. No optimal value for S_{AM} could be found consistently for the eccentricity fitting, the results depending too much upon the number of lumped harmonics being fitted. This is regretable since the eccentricity is not significantly affected by tidal forces. However, a clear consistent minimum could be found in the fitting of the inclination, the best combination being the GEM-T2 ocean tidal data and $S_{AM}=0.03~\rm cm^2~g^{-1}.$ This value for S_{AM} is somewhat lower than expected based on the spacecraft configuration, and cannot be regarded as rigorously determined. It is, however, consistent with the satellite being uncontrolled, that is without its solar arrays constantly directed towards the Sun. If this were the case, it is likely that there would be a small component of the solar radiation pressure force normal to the Sun-Earth line and this has not been taken into account. The perturbations in inclination and eccentricity using $S_{AM} = 0.03 \text{ cm}^2 \text{ g}^{-1}$ are shown in figure 4a and b respectively. It can be seen from figure 4a that the rate of change of the inclination declines significantly towards the end of the analysis and this corresponds to the satellite being in sunlight throughout its orbit (the resulting perturbation being shortperiodic.

The orbit of Meteor 28

(f) Air drag

The perturbation due to air drag on the inclination (atmospheric rotation) was removed by THROE in the fitting process. The perturbation in the eccentricity is more significant and a more sophisticated drag model was used than the one contained in THROE for its removal. The method of King-Hele (1986) was used, working in terms of the parameter Q = a(1-e). The change in Q due to drag may be written

$$dQ/dt = -(2a\dot{n}/3n)(1 - dx/da), \tag{19}$$

where x = ae. An expression for dx/da is taken from the model of Swinerd & Boulton (1982) which assumes an oblate atmosphere with a diurnal density variation. The variations in da and dx are written, using their notation as

$$\begin{split} \mathrm{d}a &= K\{A_1 + eA_2 + c\cos 2w(A_5 + eA_6) + c^2(A_8 + \cos 4wA_9) \\ &+ FA[A_{14} + eA_{15} + c\cos 2wA_{18} + c^2(A_{21} + \cos 4wA_{22})] \\ &+ FB[c\sin 2wA_{27} + c^2\sin 4wA_{30}] + O(\varGamma)], \end{split} \tag{20}$$

where $O(\Gamma) = O(e^2, ce^2, c^2e, c^3, Fe^2, Fce, Fc^2e, Fc^3)$ and dx is of identical functional form except with A_i replaced by X_i . The A_i and X_i are functions of z = ae/H and are given by Swinerd & Boulton (1982), z being evaluated at zH_p above perigee height, where H_p is the density scale height at perigee. The oblateness parameter, c, is given by

$$c = (\epsilon' a/2H)(1-e)\sin^2 i, \tag{21}$$

where $\epsilon' = 0.00335$ is the atmospheric ellipticity. The diurnal amplitude, F, is defined by (King-Hele 1987)

$$F = (f-1)/(f+1), (22)$$

where f is the ratio of maximum to minimum atmospheric density.

The atmospheric model of Jacchia (1977), J77 was used to determine f at any particular height. To obtain the maximum and minimum atmospheric density, the

N. M. Harwood and G. G. Swinerd

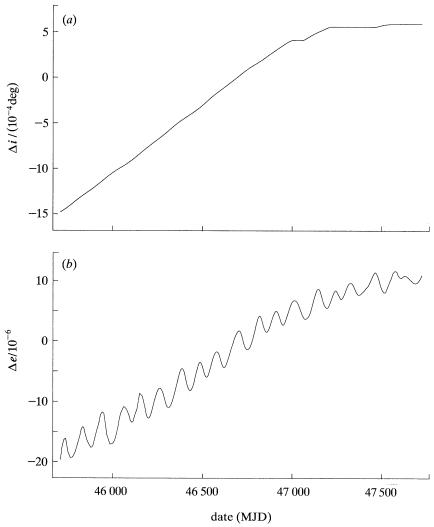


Figure 4. The perturbations in (a) inclination and (b) eccentricity due to solar radiation pressure calculated using $S_{AM} = 0.03 \text{ cm}^2 \text{ g}^{-1}$.

maximum and minimum exospheric temperatures are required and these are expressed in terms of the mean temperature in the J77 model in Swinerd & Boulton (1983).

The maximum in the diurnal density is assumed to occur at 14.5 local solar time. Integration of equation (19) gives the variation in Q due to air drag and this is shown in figure 5. It can clearly be seen from the figure that the perturbation is initially small but that there is a marked increase in the drag during higher solar activity beyond MJD 47200 (February 1988). This increase caused some problems in the fitting of the eccentricity (§7).

The atmospheric perturbations were then removed from the observed Q values. The change in Q due to resonance alone may be expressed as

$$\Delta Q_{\rm res} = (1 - e) \, \Delta a_{\rm res} - a \Delta e_{\rm res}. \tag{23} \label{eq:23}$$

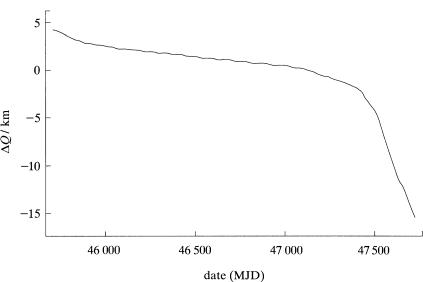


Figure 5. The perturbation in Q due to drag.

It can be shown (Allan 1973) that the change in a due to 15th-order resonance may be linked to that of i by

$$\Delta a_{\rm res} = (-2a\sin i/(15 - \cos i))\,\Delta i_{\rm res}.\tag{24}$$

Equation (23) may then be rewritten as

$$\Delta e_{\rm res} = -a^{-1} [\Delta Q_{\rm res} + (2\sin i/(15 - \cos i)) Q \Delta i_{\rm res}].$$
 (25)

The variation in inclination due to resonance alone was used in equation (25) together with the $\Delta Q_{\rm res}$ values to obtain $\Delta e_{\rm res}$.

6. Analysis of inclination

(a) The reduced form of the equation for di/dt

For 15th-order resonance, taking the $(\gamma, q) = (1, 0), (2, 0), (1, -1)$ and (1, 1) terms, the equation for di/dt becomes

$$\begin{split} \mathrm{d}i/\mathrm{d}t &= (n(1-e^2)^{-\frac{1}{2}}/\sin i) (R/a)^{15} [\{\bar{F}_{15,\,15,\,7} G_{15,\,7,\,0} (\bar{C}_{15}^{0,\,1} \sin \varPhi - \bar{S}_{15}^{0,\,1} \cos \varPhi) \\ &+ 2(R/a)^{15} \bar{F}_{30,\,30,\,14} G_{30,\,14,\,0} (\bar{C}_{30}^{0,\,2} \sin 2\varPhi - \bar{S}_{30}^{0,\,2} \cos 2\varPhi)\} (15 - \cos i) \\ &+ 15(R/a) \bar{F}_{16,\,15,\,8} G_{16,\,8,\,1} (\bar{S}_{15}^{1,\,0} \sin (\varPhi - \omega) + \bar{C}_{15}^{1,\,0} \cos (\varPhi - \omega)) \\ &+ (15 - 2\cos i) (R/a) \bar{F}_{16,\,15,\,7} G_{16,\,7,\,-1} (\bar{S}_{15}^{-1,\,2} \sin (\varPhi + \omega) + \bar{C}_{15}^{-1,\,2} \cos (\varPhi + \omega))]. \end{split}$$

The \bar{F}_{lmp} , G_{lpq} , and $Q_l^{q,k}$ (equation (8)) are determined computationally using mean values for the inclination, eccentricity and semi-major axis.

(b) The fitting of the variation in inclination

The variation in the resonance angle Φ and its rate of change $\dot{\Phi}$ are shown in figure 6. This shows that exact resonance occurred on 11 July 1988 (MJD 47353). Over the period of the analysis the rate of change of the resonance angle increased from -8.2 to 19.8 deg d⁻¹. Initially the resonant state was approached extremely slowly so the effect on the orbital elements should be very significant. However, towards the end of the analysis the increased air drag rapidly increased $\dot{\Phi}$.

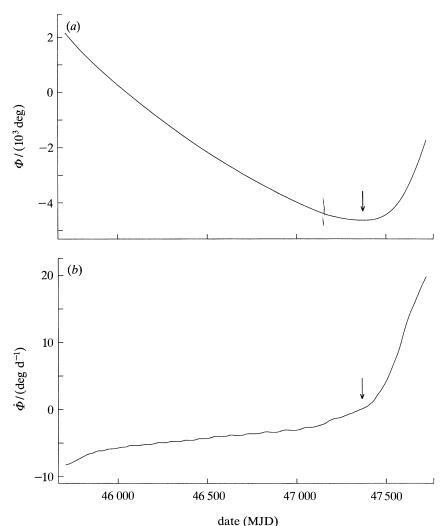
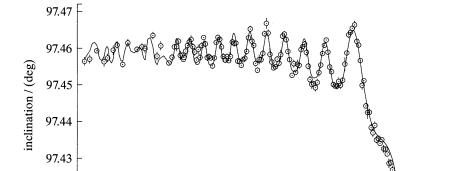


Figure 6. The variation of (a) Φ and (b) $\dot{\Phi}$ during the period of the analysis. The arrows indicate the time of exact resonance.

The perturbations were removed from the observed inclination data, the standard deviations of the orbits being relaxed to $0.000\,25^\circ$ to allow for neglected perturbations and the uncertainty in the solar radiation pressure parameter, S_{AM} . The M_2 values were averaged between epochs, \overline{M}_2 being used in preference to the values at the epochs. The inclination values were then fitted using THROE, taking the atmospheric rotation rate A=1.0 rev d⁻¹. The density scale height was taken to be 66 km corresponding to a height of 600 km, which is 0.75 H above the perigee.


An initial THROE fitting with the $(\gamma, q) = (1, 0)$ and (2, 0) terms gave a measure of fit $\epsilon = 3.27$. The values of the lumped harmonics obtained were

$$10^{9} \bar{C}_{15}^{0,1} = -23.69 \pm 1.01, \quad 10^{9} \bar{S}_{15}^{0,1} = -8.11 \pm 0.96,
10^{9} \bar{C}_{30}^{0,2} = 15.47 \pm 3.89, \quad 10^{9} \bar{S}_{30}^{0,2} = -7.92 \pm 5.68.$$
(27)

Further fittings were tried with additional (γ, q) terms. The addition of the (3, 0) term *Phil. Trans. R. Soc. Lond.* A (1993)

97.42

46 000

46 500

The orbit of Meteor 28

Figure 7. The variation in inclination due to 15th-order resonance. The curve gives the fitting to the data points using the THROE program with $(\gamma, q) = (1, 0), (2, 0)$ and (1, 1).

date (MJD)

did not improve the fit but the (1,1) and (1,-1) terms both gave improvements. However, only the addition of the (1,1) term gave well-determined lumped harmonics, the values being

$$10^{9} \bar{C}_{15}^{0,1} = -25.86 \pm 0.73, \quad 10^{9} \bar{S}_{15}^{0,1} = -2.02 \pm 0.90, 10^{9} \bar{C}_{15}^{1,0} = 6.57 \pm 10.97, \quad 10^{9} \bar{S}_{15}^{1,0} = -54.53 \pm 5.43, 10^{9} \bar{C}_{30}^{0,2} = 32.80 \pm 3.07, \quad 10^{9} \bar{S}_{30}^{0,2} = -3.41 \pm 3.95,$$
 (28)

47 000

47 500

with $\epsilon = 2.26$. The fact that the $(\gamma, q) = (1, 1)$ coefficients are well determined and that those of (1, -1) are not is to be expected since the $\Phi - \omega$ resonance (corresponding to $(\gamma, q) = (1, 1)$) was passed through at a much lower rate than that for the $\Phi + \omega$ resonance $((\gamma, q) = (1, -1))$.

Tests were made for the sensitivity of the values of the lumped harmonics to changes in both the density scale height and the atmospheric rotation rate, Λ . No significant variations were found although the value for Λ finally taken was 0.85 (King-Hele & Walker 1988). The standard deviations of nine points were relaxed by a factor of two and of one point by a factor of four to keep all the weighted residuals less than 2ϵ . This final fit of the inclination gave $\epsilon = 1.89$ and the preferred values of the lumped harmonics were

$$10^{9} \overline{C}_{15}^{0,1} = -26.18 \pm 0.63, \quad 10^{9} \overline{S}_{15}^{0,1} = -2.55 \pm 0.78,
10^{9} \overline{C}_{15}^{1,0} = 12.01 \pm 9.41, \quad 10^{9} \overline{S}_{15}^{1,0} = -51.11 \pm 4.75,
10^{9} \overline{C}_{30}^{0,2} = 32.14 \pm 2.75, \quad 10^{9} \overline{S}_{30}^{0,2} = -0.11 \pm 3.46.$$
(29)

The values of inclination cleared of all significant perturbations except resonance with respect to the geopotential are shown in figure 7. The theoretical curve from the THROE fitting with $(\gamma, q) = (1, 0), (2, 0), (1, 1)$ that gave the values of equation (29) is also shown. As can be seen, the total change in inclination due to 15th-order resonance is approximately 0.04° and is very significant. The corresponding change

in orbital position is ca. 5 km. The fitting is clearly very good considering all the other perturbing forces which had to be removed from the data. All the oscillations of the curve appear to be justified by the data and it is clear that the perturbational modelling for the inclination has been successful.

7. Analysis of eccentricity

(a) The reduced form of the equation for de/dt

For 15th-order resonance, with the $(\gamma, q) = (1, -1), (1, 1), (2, -1)$ and (2, 1) terms, the equation for de/dt becomes

$$\begin{split} \mathrm{d}e/\mathrm{d}t &= (n(1-e^2)^{-\frac{1}{2}}/e)[(R/a)^{16}\bar{F}_{16,15,7} \ G_{16,7,-1}[\bar{C}_{15}^{-1,2}\cos{(\varPhi+\omega)} + \bar{S}_{15}^{-1,2}\sin{(\varPhi+\omega)}] \\ &- (R/a)^{16}\bar{F}_{16,15,8} G_{16,8,1}[\bar{C}_{15}^{1,0}\cos{(\varPhi-\omega)} + \bar{S}_{15}^{1,0}\sin{(\varPhi-\omega)}] \\ &+ (R/a)^{31}\bar{F}_{31,30,14} G_{31,14,-1}[\bar{C}_{30}^{-1,3}\cos{(2\varPhi+\omega)} + \bar{S}_{30}^{-1,3}\sin{(2\varPhi+\omega)}] \\ &- (R/a)^{31}\bar{F}_{31,30,15} G_{31,15,1}[\bar{C}_{30}^{-1,1}\cos{(2\varPhi-\omega)} + \bar{S}_{30}^{-1,1}\sin{(2\varPhi-\omega)}]]. \end{split}$$
(30)

The coefficients \overline{F} , G and the Q functions are determined in a similar manner as for the inclination.

(b) The fitting of the variation in eccentricity

The perturbations were removed from the eccentricity data and the standard deviations relaxed to 0.00001 (corresponding to an uncertainty of around 70 m in perigee height) to allow for neglected perturbations and inadequacies in the drag and solar radiation pressure modelling processes. A further relaxation was made to 0.00002 to the last 20 data points where the air drag increased significantly. The values were then fitted using THROE with its air drag model 'turned off', the e values already having been cleared of drag effects. The density scale height was taken to be 76 km corresponding to a height of 646 km which is 1.5 H above perigee. The atmospheric rotation rate was taken to be 0.85 rev d⁻¹. An initial THROE fitting with the $(\gamma, q) = (1, -1)$ and (1, 1) terms gave $\epsilon = 9.75$, the values of the lumped harmonics being

$$10^{9} \bar{C}_{15}^{-1,2} = 23.17 \pm 12.65, \quad 10^{9} \bar{S}_{15}^{-1,2} = -39.06 \pm 7.81, 10^{9} \bar{C}_{15}^{1,0} = -36.83 \pm 2.07, \quad 10^{9} \bar{S}_{15}^{1,0} = -55.40 \pm 1.38.$$
 (31)

The value of ϵ is poor and the corresponding fitting showed substantial deviations from the data points. However, further fittings with addition (γ,q) terms showed $(\gamma,q)=(1,2)$ to give a significant improvement as shown in figure 8. This reduced ϵ to 6.56, which was still not satisfactory. Deviations remained between the fitted curve and the data during the time period at the end of the analysis where the drag increases. The lumped harmonics for the corresponding $\Phi-2\omega$ resonance were also not well determined, the resonance being passed through relatively rapidly at the beginning of the analysis. As no satisfactory fitting could be obtained to the data over the total period in a single fitting it was decided to proceed with the analysis starting at an epoch after the $\Phi-2\omega$ resonance and to stop before the drag increase. Tests over different time periods showed the best span for the analysis to be from epochs 16 to 148 corresponding to a starting date of 23 April 1985 (MJD 46178) and finishing on 27 January 1989 (MJD 47553). The fittings were still rather poor for epochs 16 to 31 and the standard deviations of these points were relaxed further to 0.00002 to compensate. It is not clear whether the ill fitting of these data points is

The orbit of Meteor 28

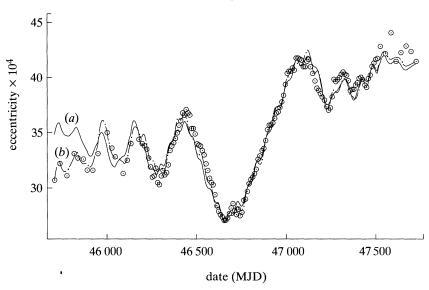


Figure 8. The variation of eccentricity due to 15th-order resonance. The curves give initial fittings to the data points using the THROE program with (a) $(\gamma, q) = (1, -1)$ and (1, 1) $(\epsilon = 9.75)$ and (b) $(\gamma, q) = (1, -1)$, (1, 1) and (1, 2) $(\epsilon = 6.56)$.

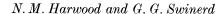
due to perturbations which have either not been accounted for or have been inaccurately modelled. Addition of further (γ, q) terms did not improve the results in this region.

The fitting with $(\gamma, q) = (1, -1)$ and (1, 1) gave $\epsilon = 6.91$, the values of the lumped harmonics being

$$10^{9} \bar{C}_{15}^{-1,2} = 20.21 \pm 9.11, \qquad 10^{9} \bar{S}_{15}^{-1,2} = -39.42 \pm 7.21, 10^{9} \bar{C}_{15}^{1,0} = -42.08 \pm 1.57, \qquad 10^{9} \bar{S}_{15}^{1,0} = -57.27 \pm 0.99.$$
 (32)

Three of the four values have not changed significantly from equations (31) although they are slightly better determined. Further fittings showed $(\gamma, q) = (2, 1)$ to give an improvement with $\epsilon = 6.29$. The values obtained for the lumped harmonics were

$$10^{9} \bar{C}_{15}^{-1,2} = 1.37 \pm 9.24, \qquad 10^{9} \bar{S}_{15}^{-1,2} = -36.24 \pm 6.78, \\ 10^{9} \bar{C}_{15}^{1,0} = -44.42 \pm 1.50, \qquad 10^{9} \bar{S}_{15}^{1,0} = -57.75 \pm 1.10, \\ 10^{9} \bar{C}_{30}^{1,1} = 19.76 \pm 7.64, \qquad 10^{9} \bar{S}_{30}^{1,1} = -8.89 \pm 5.58.$$
 (33)


It can be seen that the additional term has significantly affected the value obtained for $\bar{C}_{15}^{-1,2}$. However, the $\bar{C}_{30}^{1,1}$ and $\bar{S}_{30}^{1,1}$ values are reasonably determined and should, therefore, be included. A final run with the standard deviations increased by a factor of two on 14 of the points to keep all weighted residuals less than 2ϵ gave $\epsilon = 4.39$. This gave the preferred values of the lumped harmonics as

$$10^{9} \bar{C}_{15}^{-1,2} = 0.56 \pm 6.74, \qquad 10^{9} \bar{S}_{15}^{-1,2} = -41.70 \pm 4.90, \\ 10^{9} \bar{C}_{15}^{1,0} = -45.83 \pm 1.10, \qquad 10^{9} \bar{S}_{15}^{1,0} = -57.96 \pm 0.81, \\ 10^{9} \bar{C}_{30}^{1,1} = 20.89 \pm 5.43, \qquad 10^{9} \bar{S}_{30}^{1,1} = -9.84 \pm 3.97.$$
 (34)

The values were not changed significantly by variations in the density scale height. The eccentricity data cleared of all the significant perturbations except for resonance

Phil. Trans. R. Soc. Lond. A (1993)

630

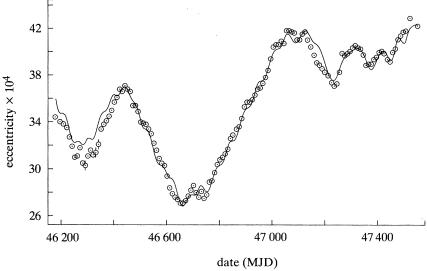


Figure 9. The preferred fitting of the variation of eccentricity due to 15th-order resonance. The curve gives the fitting to the data points using the THROE program with $(\gamma, q) = (1, -1), (1, 1)$ and (2, 1).

with the geopotential are shown in figure 9. The THROE fitting which gave the values of equations (34) is also shown. The fitting is not as satisfactory as that for the inclination (figure 7), a value of $\epsilon = 4.39$ being rather high. It is suspected that not all the perturbing forces have been accounted for or that some of those modelled may not be determined with sufficient accuracy. It is noteworthy that the removal of the air drag from the eccentricity data is difficult to achieve with an accuracy of better than 5–10%.

8. Simultaneous fitting of inclination and eccentricity

The inclination and eccentricity may be fitted simultaneously by using the RAE program SIMRES. The program combines the outputs of a number of THROE runs to produce a single set of lumped harmonic coefficients. The results of THROE runs with $(\gamma,q)=(1,0),\ (2,0),\ (1,-1),\ (1,1)$ and (2,1) for both the inclination and eccentricity were used. These separate fittings gave $\epsilon=1.71$ and $\epsilon=4.17$ for the inclination and eccentricity respectively. The weighting of the eccentricity in the corresponding SIMRES run was therefore downgraded by a factor equal to the ratio of the ϵ resulting from the two THROE fittings, namely 2.44. The values of the lumped harmonics were

$$10^{9} \overline{C}_{15}^{0,1} = -26.10 \pm 0.67, \quad 10^{9} \overline{S}_{15}^{0,1} = -4.02 \pm 0.66,
10^{9} \overline{C}_{15}^{-1,2} = 4.51 \pm 7.63, \quad 10^{9} \overline{S}_{15}^{-1,2} = -44.45 \pm 5.52,
10^{9} \overline{C}_{15}^{1,0} = -44.29 \pm 1.26, \quad 10^{9} \overline{S}_{15}^{1,0} = -57.64 \pm 0.89,
10^{9} \overline{C}_{30}^{0,2} = 25.30 \pm 2.66, \quad 10^{9} \overline{S}_{30}^{0,2} = -1.57 \pm 3.77,
10^{9} \overline{C}_{30}^{1,1} = 17.02 \pm 6.25, \quad 10^{9} \overline{S}_{30}^{1,1} = -8.56 \pm 4.46,$$
(35)

with $\epsilon = 2.09$.

Phil. Trans. R. Soc. Lond. A (1993)

The values for $\bar{C}_{15}^{1,0}$ from the individual runs differ significantly, the $\bar{C}_{15}^{1,0}$ from the inclination being not so well determined. However, the $(\gamma,q)=(1,1)$ term is necessary in both to produce adequate fittings. For these reasons the values from the SIMRES run (equations (35)) are taken as the final preferred values.

9. Equations for the individual harmonic coefficients

The lumped harmonics may be expressed as linear combinations of the individual tesseral harmonic coefficients as demonstrated by equations (7). The mean values for the inclination, eccentricity and semi-major axis for 1977-57A are 97.4518°, 0.003547 and 6945.25 km respectively, giving the equations as

$$\begin{split} \overline{C}_{15}^{0,1} &= \overline{C}_{15,15} - 0.1038 \overline{C}_{17,15} - 0.3824 \overline{C}_{19,15} - 0.4075 \overline{C}_{21,15} - 0.3364 \overline{C}_{23,15} \\ &- 0.2372 \overline{C}_{25,15} - 0.1417 \overline{C}_{27,15} - 0.0634 \overline{C}_{29,15} - 0.0061 \overline{C}_{31,15} \\ &+ 0.0310 \overline{C}_{33,15} + 0.0512 \overline{C}_{35,15} + \ldots, \\ \overline{C}_{15}^{1,0} &= \overline{C}_{16,15} + 0.9424 \overline{C}_{18,15} + 0.7593 \overline{C}_{20,15} + 0.5411 \overline{C}_{22,15} + 0.3287 \overline{C}_{24,15} \\ &+ 0.1437 \overline{C}_{26,15} - 0.0033 \overline{C}_{28,15} - 0.1089 \overline{C}_{30,15} - 0.1752 \overline{C}_{32,15} \\ &- 0.2071 \overline{C}_{34,15} - 0.2115 \overline{C}_{36,15} + \ldots, \\ \overline{C}_{15}^{-1,2} &= \overline{C}_{16,15} + 0.3813 \overline{C}_{18,15} - 0.0852 \overline{C}_{20,15} - 0.3405 \overline{C}_{22,15} - 0.4272 \overline{C}_{24,15} \\ &- 0.4020 \overline{C}_{26,15} - 0.3151 \overline{C}_{28,15} - 0.2045 \overline{C}_{30,15} - 0.0959 \overline{C}_{32,15} \\ &- 0.0044 \overline{C}_{34,15} + 0.0628 \overline{C}_{36,15} + \ldots, \\ \overline{C}_{30}^{0,2} &= \overline{C}_{30,30} - 0.7907 \overline{C}_{32,30} - 0.7935 \overline{C}_{34,30} - 0.4496 \overline{C}_{36,30} - 0.1215 \overline{C}_{38,30} \\ &+ 0.1938 \overline{C}_{46,30} + 0.1420 \overline{C}_{48,30} + \ldots, \\ \overline{C}_{30,1}^{1,1} &= \overline{C}_{31,30} + 0.4889 \overline{C}_{33,30} + 0.0749 \overline{C}_{35,30} - 0.1744 \overline{C}_{37,30} \\ &- 0.2847 \overline{C}_{39,30} - 0.2982 \overline{C}_{41,30} - 0.2541 \overline{C}_{43,30} - 0.1834 \overline{C}_{45,30} + \ldots \end{split}$$

The equations for the lumped $\bar{S}_{15}^{q,k}$ and $\bar{S}_{30}^{q,k}$ harmonics are identical with those for \bar{C} except with C being replaced by S. Termination of the above equations has been taken at 36th-degree unless the expected contribution of the higher terms is above 5% of that due to the first, in which case the additional terms have been evaluated.

10. Approximate accuracy in geoid height

The accuracy in geoid height, $\sigma_{\rm g}$, corresponding to a standard deviation σ in one of the lumped harmonics is approximately $R\sigma/Q$ (King-Hele 1986) where

$$Q = \{ \Sigma (Q_l^{q, k} l_0^2 / l^2)^2 \}^{\frac{1}{2}}.$$

The values of $\sigma_{\rm g}$ (in centimetres) for each lumped harmonic are

$$\begin{array}{lll} \overline{C}_{15}^{0,\,1}=0.4, & \overline{C}_{15}^{-1,\,2}=4.4, & \overline{C}_{15}^{1,\,0}=0.6, & \overline{C}_{30}^{0,\,2}=1.6, & \overline{C}_{30}^{1,\,1}=2.8, \\ \overline{S}_{15}^{0,\,1}=0.4, & \overline{S}_{15}^{-1,\,2}=3.2, & \overline{S}_{15}^{1,\,0}=0.4, & \overline{S}_{30}^{0,\,2}=2.2, & \overline{S}_{30}^{1,\,1}=2.0. \end{array}$$

Thus the accuracies in geoid height for $\bar{C}_{15}^{0,1}$, $\bar{S}_{15}^{0,1}$, $\bar{C}_{15}^{1,0}$ and $\bar{S}_{15}^{1,0}$ are better than 1 cm. *Phil. Trans. R. Soc. Lond.* A (1993)

Table 5. Comparison of the values of the lumped 15th- and 30th-order harmonics from 1977-57A and those for comprehensive geoid models

lumped harmonic	1977-57A	GEM 10B	GRIM3-L1	GEMT1	PGS-4393 (GEM T3)	KHW 89	KHW 90
$10^9 \bar{C}_{15}^{0,1}$	-26.1 ± 0.7	-23.8 ± 4.9	-31.9 ± 5.8	-23.3 ± 3.9	-26.1 ± 1.2	-27.2 ± 0.8	
$10^9 \bar{S}_{15}^{0,1}$	-4.0 ± 0.7	-3.1 ± 4.9	2.4 ± 5.8	-8.2 ± 3.9	-1.2 ± 1.2	-7.7 ± 1.0	
$10^9 \bar{C}_{15}^{-1,2}$	4.5 ± 7.6	-2.5 ± 5.3	4.3 ± 6.0	-3.8 ± 5.7	0.6 ± 1.4	7.0 ± 1.9	-
$10^9 \bar{S}_{15}^{-1,2}$	-44.5 ± 5.5	-18.1 ± 5.3	-20.3 ± 6.0	-21.1 ± 5.7	-21.4 ± 1.4	-12.3 ± 1.4	a salestona
$10^9 \bar{C}_{15}^{1,0}$	-44.3 ± 1.3	-62.1 ± 7.0	-59.4 ± 7.5	-49.4 ± 6.6	-55.2 ± 1.7	-64.1 ± 2.6	
$10^9 \bar{S}_{15}^{1,0}$	-57.6 ± 0.9	-43.3 ± 7.0	-57.9 ± 7.5	-52.5 ± 6.6	-56.4 ± 1.7	-47.2 ± 1.9	
$10^9 \bar{C}_{30}^{0,2}$	25.3 ± 2.7	6.4 ± 6.3	26.5 ± 4.6	-2.5 ± 8.8	21.7 ± 2.9	15.2 ± 2.7	22.4 ± 2.5
$10^9 \bar{S}_{30}^{0,2}$	-1.6 ± 3.8	10.8 ± 6.3	4.5 ± 4.6	-0.9 ± 8.8	3.9 ± 2.9	5.7 ± 3.1	5.6 ± 2.3
$10^9 \bar{C}_{30}^{1,1}$	17.0 ± 6.3	-0.5 ± 4.5	-2.7 ± 3.3	-0.9 ± 6.3	-0.5 ± 2.5	_	
$10^9 \bar{S}_{30}^{1,1}$	-8.6 ± 4.5	-13.4 ± 4.5	-15.5 ± 3.3	1.6 ± 6.3	-11.0 ± 2.5	_	

11. Comparison with comprehensive geopotential models

A comparison is shown in table 5 between the lumped harmonics obtained from this analysis and those for comprehensive geoid models. The models are GEM-10B (Lerch et al. 1981), GRIM3-L1 (Reigber et al. 1985), GEM-T1 (Marsh et al. 1988) and PGS4393 (Marsh et al. 1989), a preliminary version of GEM-T3. Also included are the values computed from the King-Hele & Walker 15th- and 30th-order solution (King-Hele & Walker 1989) and 30th-order solution (King-Hele & Walker 1990), which we refer to as KHW89 and KHW90 respectively. These models, with the exception of PGS4393 and the KWH90 solutions all extend to degree and order 36. The 30th-order solution of KHW90 extends to degree 40 and PGS4393 to degree and order 50.

In general the lumped harmonics derived from this analysis are well determined and compare favourably with the model values. It is noteworthy that the value of $\bar{C}_{15}^{0,1}$ is precisely that of PGS4393 and better determined, and that $\bar{S}_{15}^{0,1}$ is about half-way between the two best previous values (which are inconsistent with each other). The values of $\bar{C}_{15}^{1,0}$ and $\bar{S}_{15}^{1,0}$ derived from 1977-57A have lower standard deviations than in any of the models: the S value agrees with PGS4393, but the C value is numerically smaller than in any of the models. The values of $\bar{C}_{30}^{0,2}$ and $\bar{S}_{30}^{0,2}$ are consistent with, and of similar accuracy to, those of PGS4393 and KHW90. Some of the less-well-determined values, such as the $\bar{S}_{15}^{-1,2}$ and $\bar{C}_{30}^{1,1}$ coefficients do differ significantly and consistently from the model values. All of the lumped harmonics determined in this analysis are sufficiently accurate to contribute to future solutions for the 15th- and 30th-order tesseral harmonic coefficients.

12. Conclusions

The orbit of satellite Meteor 28 (1977-57A) has been determined at 154 epochs between 8 January 1984 and 18 July 1989 during which it experienced 15th-order resonance with the geopotential. Almost 10000 observations were used in the orbit determination process. The orbit was Sun-synchronous and hence was significantly perturbed by many solar-induced perturbations. All the known significant perturbations have been calculated and subtracted from the inclination and eccentricity data. The removal of the solar-resonant perturbations, which were much enhanced due to the nature of the orbit, has been a major part of this analysis. The changes in the inclination and eccentricity due to resonance with the 15th- and 30th-

order harmonics in the geopotential have been analysed to obtain six lumped harmonics of order 15 and four of order 30. The preferred values are given by equations (35). The equations relating these values to the individual tesseral harmonic coefficients are given by equations (36). The results compare favourably with values obtained from comprehensive geoid models and correspond to accuracies in geoid height of between 0.4 and 4.4 cm. The values of the lumped harmonics together with the corresponding equations will be used in a future determination of the individual 15th- and 30th-order tesseral harmonic coefficients.

We thank the Science and Engineering Research Council and the Ministry of Defence, under whose sponsorship this work was carried out (Grant Reference: GR/F 16301). We also thank Dr Desmond King-Hele for much advice and assistance, and Dr Clive Brookes of Birmingham University for software runs and advice. Finally, we acknowledge Mr Alan Winterbottom of RAE, Farnborough for his valued assistance throughout this project.

References

- Allan, R. R. 1973 Satellite resonance with longitude-dependent gravity. III. Inclination changes for close satellites. *Planet. Space Sci.* 21, 205–225.
- Aksnes, K. 1976 Short-period and long-period perturbations of a spherical satellite due to direct solar radiation. *Celestial Mech.* 13, 89–104.
- Cook, G. E. 1973 Basic theory for PROD, a program for computing the development of satellite orbits. Celestial Mech. 7, 301-314.
- Doodson, A. T. 1921 The harmonic development of the tide-generating potential. *Proc. R. Soc. Lond.* 100, 305–329.
- Gooding, R. H. 1971 Lumped geopotential coefficients \bar{C}_{15} and \bar{S}_{15} obtained from resonant variation in the orbit of Ariel 3. RAE Tech. Rep. 71068.
- Gooding, R. H. 1974 The evolution of the PROP6 orbit determination program and related topics. RAE Tech. Rep. 74164.
- Gooding, R. H. & King-Hele, D. G. 1989 Explicit forms of some functions arising in the analysis of resonant satellite orbits. *Proc. R. Soc. Lond.* A **422**, 241–259.
- Hendershott, M. & Munk, W. 1970 Tides. A. Rev. Fluid Mech. 21, 205-224.
- Jacchia, L. G. 1977 Thermospheric temperature density and composition: new models. Smithsonian Astrophys. Obs. Spec. Rep. 375.
- Kaula, W. M. 1966 Theory of satellite geodesy. Waltham, MA: Blaisdell.
- King-Hele, D. G. 1986 Analysis of the orbit of 1971-30B at 15th-order resonance. *Planet. Space Sci.* 34, 1319–1328.
- King-Hele, D. G. 1987 Satellite orbits in an atmosphere. Glasgow: Blackie.
- King-Hele, D. G. & Walker, D. M. C. 1988 Upper atmosphere zonal winds from satellite orbit analysis: an update. *Planet. Space Sci.* 36, 1085–1093.
- King-Hele, D. G. & Walker, D. M. C. 1989 Evaluation of 15th and 30th-order geopotential harmonic coefficients from 26 resonant satellite orbits. *Planet. Space Sci.* 37, 805–823.
- King-Hele, D. G. & Walker, D. M. C. 1990 New values for geopotential harmonic coefficients of order 30 and even dgree. *Planet. Space Sci.* 38, 407–409.
- King-Hele, D. G., Walker, D. M. C., Winterbottom, A. N., Pilkington, J. A., Hiller, H. & Perry, G. E. 1990 The RAE table of Earth satellites 1957–1989. RAE Farnborough.
- Kozai, Y. 1961 Smithsonian Astrophys. Obs. Spec. Rep. 56.
- Lambeck, K., Cazenave, A. & Balmino, G. 1973 Solid Earth and fluid tides from satellite orbit analyses. In *The use of artificial satellites for geodesy and geodynamics* (ed. G. Veis). Technical University of Athens.
- Lambeck, K. 1977 Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences. *Phil. Trans. R. Soc. Lond.* A **287**, 545–593.
- Lambeck, K. 1988 Geophysical geodesy. Oxford: Clarendon Press.
- Phil. Trans. R. Soc. Lond. A (1993)

- Lerch, F. J., Putney, B. H., Wagner, C. A. & Klosko, S. A. 1981 Goddard Earth models for
- oceanographic applications. Marine Geodesy 5, 145–187. Marsh, J. G. et al. 1988 A new gravitational model for the Earth from satellite tracking data:
- GEM-T1. J. geophys. Res. 93, 6169-6215. Marsh, J. G., Lerch, F. J., Putney, B. H., Felsentreger, T. L. & Sanchez, B. V. 1990 The GEM-T2
- gravitational model. J. geophys. Res. 95, 22043–22071.
- Marsh, J. G., Lerch, F. J., Koblinsky, C. H., Klosko, S. M., Robbins, J. W., Williamson, R. G. & Patel, G. B. 1989 Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data. NASA Technical Memorandum 100735.
- Melbourne, W., Anderle, R., Feissel, M., King, R., McCarthy, D., Smith, D., Tapley, B. & Vicente, R. 1983 Project MERIT standards. United States Naval Observatory Circular no. 167. Washington, D.C.: U.S. Naval Observatory.
- Moore, P. 1987 Ocean tidal parameters from Starlette data. Bull. Geod. G 1, 223–234.
- Reigber, C., Muller, H., Bosch, W., Balmino, G. & Moynot, B. 1985 GRIM gravity model improvement using Lageos (GRIM 3-L1). J. geophys. Res. 90, 9285-9299.
- Schwiderski, E. W. 1983 Atlas of ocean tidal charts and maps. Part 1. The semidiurnal principal lunar tide. M₂. Marine Geodesy 6, 219–265.
- Swinerd, M. 1982 MACPROP: a revised program for the refinement of satellite orbital parameters. Thesis, ESRU, Aston University.
- Swinerd, G. G. & Boulton, W. J. 1982 Contraction of satellite orbits in an oblate atmosphere with a diurnal density variation. Proc. R. Soc. Lond. A 383, 127–145.
- Swinerd, G. G. & Boulton, W. J. 1983 Near-circular satellite orbits in an oblate diurnally varying atmosphere. Proc. R. Soc. Lond. A 389, 153-170.
- Williamson, R. G. & Marsh, J. G. 1985 Starlette geodynamics: the Earth's tidal response. J. geophys. Res. 90, 9346-9352.

Received 27 January 1992; revised 30 April 1992; accepted 12 June 1992